Mathematical and Computational Models in Tumor Immunology

F. Pappalardo; A. Palladini; M. Pennisi; F. Castiglione; S. Motta

Mathematical Modelling of Natural Phenomena (2012)

  • Volume: 7, Issue: 3, page 186-203
  • ISSN: 0973-5348

Abstract

top
The immune system is able to protect the host from tumor onset, and immune deficiencies are accompanied by an increased risk of cancer. Immunology is one of the fields in biology where the role of computational and mathematical modeling and analysis were recognized the earliest, beginning from 60s of the last century. We introduce the two most common methods in simulating the competition among the immune system, cancers and tumor immunology strategies: differential equations and rule-based models. Several specific implementations are presented, describing in details how they work and how they advance or contribute the field of tumor immunology.

How to cite

top

Pappalardo, F., et al. "Mathematical and Computational Models in Tumor Immunology." Mathematical Modelling of Natural Phenomena 7.3 (2012): 186-203. <http://eudml.org/doc/222444>.

@article{Pappalardo2012,
abstract = {The immune system is able to protect the host from tumor onset, and immune deficiencies are accompanied by an increased risk of cancer. Immunology is one of the fields in biology where the role of computational and mathematical modeling and analysis were recognized the earliest, beginning from 60s of the last century. We introduce the two most common methods in simulating the competition among the immune system, cancers and tumor immunology strategies: differential equations and rule-based models. Several specific implementations are presented, describing in details how they work and how they advance or contribute the field of tumor immunology.},
author = {Pappalardo, F., Palladini, A., Pennisi, M., Castiglione, F., Motta, S.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {cancers; tumor immunology; agent based models; mathematical modeling; vaccines},
language = {eng},
month = {6},
number = {3},
pages = {186-203},
publisher = {EDP Sciences},
title = {Mathematical and Computational Models in Tumor Immunology},
url = {http://eudml.org/doc/222444},
volume = {7},
year = {2012},
}

TY - JOUR
AU - Pappalardo, F.
AU - Palladini, A.
AU - Pennisi, M.
AU - Castiglione, F.
AU - Motta, S.
TI - Mathematical and Computational Models in Tumor Immunology
JO - Mathematical Modelling of Natural Phenomena
DA - 2012/6//
PB - EDP Sciences
VL - 7
IS - 3
SP - 186
EP - 203
AB - The immune system is able to protect the host from tumor onset, and immune deficiencies are accompanied by an increased risk of cancer. Immunology is one of the fields in biology where the role of computational and mathematical modeling and analysis were recognized the earliest, beginning from 60s of the last century. We introduce the two most common methods in simulating the competition among the immune system, cancers and tumor immunology strategies: differential equations and rule-based models. Several specific implementations are presented, describing in details how they work and how they advance or contribute the field of tumor immunology.
LA - eng
KW - cancers; tumor immunology; agent based models; mathematical modeling; vaccines
UR - http://eudml.org/doc/222444
ER -

References

top
  1. A.K. Abbas, A.H. Lichtman, S. Pillai. Cellular and Molecular Immunology, 6th edn. (Elsevier, 2007).  
  2. T. Alarcon, H.M. Byrne, P.K. Maini. A multiple scale model for tumor growth, SIAM. Multiscale Model Simul., 3, (2005) 440-475.  
  3. R. Antia, C.T. Bergstrom, S.S. Pilyugin, S.M. Kaech, R. Ahmed. Models of CD8+ responses : 1. What is the antigen-independent proliferation program, J Theor Biol. 221, (2003) 585-598.  
  4. V. Apostolopoulos, C. Osinski, I.F. McKenzie. MUC1 cross-reactive Gal alpha(1,3)Gal antibodies in humans switch immune responses from cellular to humoral, Nat. Med. 4, (1998) 315-320.  
  5. T. Barthlott, G. Kassiotis, B. Stockinger. T cell regulation as a side effect of homeostasis and competition, J. Exp. Med. 4, (2003) 451-460.  
  6. G.I. Bell. Mathematical Model of Clonal Selection and Antibody Production, Nature, 228, (1970) 739-744.  
  7. N. Bellomo, M. Delitala. From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells, Physics of Life Reviews, 5, (2008) 183-206.  
  8. G.A. Bocharov. Modelling the Dynamics of LCMV Infection in Mice : Conventional and Exhaustive CTL Responses, J Theor Biol.192(3), (1998) 283-308.  
  9. K. Boggio, G. Nicoletti, E. Di Carlo, F. Cavallo, l. Landuzzi, C. Melani, M. Giovarelli, I. Rossi, P. Nanni, C. De Giovanni, P. Bouchard, S. Wolf, A. Modesti, P. Musiani, P.L. Lollini, M.P. Colombo, G. Forni. Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice, J Exp Med188 (1998) 589-596.  
  10. F. Castiglione, F. Toschi, M. Bernaschi, S. Succi, R. Benedetti, B. Falini, A. Liso. Computational modeling of the immune response to tumor antigens : implications for vaccination, J Theo Biol, 237(4) (2005) 390-400.  
  11. F. Cavallo, R.A. Calogero, G. Forni. Are oncoantigens suitable targets for anti-tumour therapy ?, Nat Rev Cancer7 (2007) 707-713.  
  12. F. Cavallo, C. De Giovanni, P. Nanni, G. Forni, P.L. Lollini. 2011 : the immune hallmarks of cancer, Cancer Immunol Immunother60 (2011) 319-326.  
  13. F. Celada, P.E. Seiden. A computer model of cellular interaction in the immune system Immunol. Today13, (1992) 56-62.  
  14. F. Celada, P.E. Seiden. Affinity Maturation and Hypermutation in a Simulation of the Humoral Response, Eur J Immunol., 26, (1996) 1350-1358.  
  15. D. Chowdhury, D. Stauffer, P.V. Choudary. A Unified Discrete Model of Immune Response, J Theor Biol. 145, (1990) 207-215.  
  16. I.R. Cohen, H. Atlan. Network Regulation of Autoimmunity : An Automation Model, J Autoimmun., 2(5), (1989) 613-625.  
  17. C. De Giovanni, G. Nicoletti, L. Landuzzi, A. Astolfi, S. Croci, A. Comes, S. Ferrini, R. Meazza, M. Iezzi, E. Di Carlo, P. Musiani, F. Cavallo, P. Nanni, P.L. Lollini. Immunoprevention of HER-2/neu transgenic mammary carcinoma through an interleukin 12-engineered allogeneic cell vaccine, Cancer Res64 (2004) 4001-4009.  
  18. G.P. Dunn, L.J. Old, R.D. Schreiber. The immunobiology of cancer immunosurveillance and immunoediting, Immunity21 (2004) 137-148.  
  19. S. Feyerabend, S. Stevanovic, C. Gouttefangeas, et al.Novel multi-peptide vaccination in Hla-A2+ hormone sensitive patients with biochemical relapse of prostate cancer, Prostate, 69(9), (2009) 917-927.  
  20. O.J. Finn. Cancer immunology, N Engl J Med358 (2008) 2704-2715.  
  21. S. Forrest, Beauchemin. Computer Immunology, Immunol Rev.216, (2007) 176-197.  
  22. R.A. Gatenby, P.K. Maini, E.T. Gawlinski. Analysis of tumor as an inverse problem provides a novel theoretical framework for understanding tumor biology and therapy, Appl. Math. Letters, 15, (2002) 339-345.  
  23. M. Halling-Brown, F. Pappalardo, N. Rapin, P. Zhang, et al.ImmunoGrid : Towards Agent-based Simulations of the Human Immune System at a Natural Scale, Philosophical Transactions A, 368, (2010) 2799-2815.  
  24. M. Jílek, J. Ŝterzl. Model of Differentiation of Immunologically Competent Cell, in Developmental Aspects of Antibody Formation and Structure. (eds.), Academia, Prague, (1970) 963-981.  
  25. M. Kaufman, J. Urbain, R. Thomas. Towards a Logical Analysis of the Immune Response, J Theor Biol.114(4), (1985) 527-561.  
  26. R.M. Kedl, J.W. Kappler, P. Marrack. Epitope dominance, competition and T cell affinity maturation, Curr. Opin. Immunol.15 (2003), 120-127.  
  27. R.M. Kedl, B.C. Schaefer, J.W. Kappler, P. Marrack. T cells down-modulate peptide-MHC complexes on APCs in vivo, Nat. Immunol. 3, (2002) 27-32.  
  28. S. Kim-Schulze, B. Taback, H.L. Kaufman. Cytokine therapy for cancer, Surgical Oncology Clinics of North America, 16(4), (2007) 793-818.  
  29. Z. Kirkali, E. T uzel.Systemic therapy of kidney cancer : tyrosine kinase inhibitors antiagiogenesis or IL-2 ?, Future Oncology, vol. 5(6), (2009) 871-888.  
  30. P. Klenerman, R.M. Zinkernagel. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes, Nature394, (1998) 482-485.  
  31. S. Koido, E. Hara, S. Homma, et al. Cancer vaccine by fusions of dendritic and cancer cells, Clinical and Developmental Immunology, 2009 (657369) (2009).  
  32. C.A. Kruse, L. Cepeda, B. Owens, S.D. Johnson, J. Stears, K.O. Lillehei. Treatment of recurrent glioma with intracav- itary alloreactive cytotoxic T lymphocytes and interleukin-2, Cancer Immunology Immunotherapy, 45(2), (1997) 77-87.  
  33. Ha Youn Lee, D.J. Topham, Sung Yong Park, J. Hollenbaugh, et al.Simulation and Prediction of the Adaptive Immune Response to Influenza A Virus Infection, Journal of Virology, 83(14), (2009) 7151-7165.  
  34. S. Liang, K. Mozdzanowska, G. Palladino, W. Gerhard. Heterosubtypic immunity to influenza type A virus in mice. Effector mechanisms and their longevity, J. Immunol. 152, (1994) 1653-1661.  
  35. A. Lin, A. Schildknecht, L.T. Nguyen, P.S. Ohashi. Dendritic cells integrate signals from the tumor micro-environment to modulate immunity and tumor growth, Immunology Letters, 127(2), (2010) 77-84.  
  36. J.F. Lynch,. A Logical Characterization of Individual-Based Models, 23rd Annual IEEE Symposium on Logic in Computer Science, (2008) 379-390.  
  37. P.-L. Lollini, F. Cavallo, P. Nanni, G. Forni. Vaccines for tumour prevention, Nat. Rev. Cancer, 6, (2006) 204-216.  
  38. P.L. Lollini, G. Nicoletti, L. Landuzzi, F. Cavallo, G. Forni, C. De Giovanni, P. Nanni. Vaccines and other immunological approaches for cancer immunoprevention, Curr Drug Targets (2010) Epub ahead of print.  
  39. Y. Louzoun. The evolution of mathematical immunology, Immunological Reviews, 216, (2007) 9-20.  
  40. P. Manneville and Al. Cellular Automata and Modeling of Complex Physical Systems, Springer Verlag Series in Physics. 46, (1989).  
  41. A. Mantovani, P. Allavena, A. Sica, F. Balkwill. Cancer- related inflammation, Nature, 454(7203), (2008) 436-444.  
  42. D.F. McDermott. Immunotherapy of metastatic renal cell carcinoma, Cancer, 115(10), (2009) 2298-2305.  
  43. M. MezÂťard, G. Parisi, M. Virasoro. Spin Glass Theory and Beyond, World Scientific, Singapore (1988).  
  44. S. Motta, F. Castiglione, P.-L. PLollini, F. Pappalardo. Modelling Vaccination Schedules for a Cancer Immunoprevention Vaccine, Immunome Research, 1 :5, (2005) doi :.  URI10.1186/1745-7580-1-5
  45. P. Nanni, G. Nicoletti, C. De Giovanni, L. Landuzzi, E. Di Carlo, F. Cavallo, S.M. Pupa, I. Rossi, M.P. Colombo, C. Ricci, A. Astolfi, P. Musiani, G. Forni, P.L. Lollini. Combined allogeneic tumor cell vaccination and systemi interleukin 12 prevents mammary carcinogenesis in HER-2/neu transgenic mice, J Exp Med194 (2001) 1195-1205.  
  46. P. Nanni, L. Landuzzi, G. Nicoletti, C. De Giovanni, I. Rossi, S. Croci, A. Astolfi, M. Iezzi, E. Di Carlo, P. Musiani, G. Forni, P.L. Lollini. Immunoprevention of mammary carcinoma in HER-2/neu transgenic mice is IFN-gamma and B cell dependent, J Immunol173 (2004) 2288-2296.  
  47. P. Nanni, G. Nicoletti, A. Palladini, S. Croci, A. Murgo, A. Antognoli, L. Landuzzi, M. Fabbi, S. Ferrini, P. Musiani, M. Iezzi, C. De Giovanni, P.L. Lollini. Antimetastatic activity of a preventive cancer vaccine, Cancer Res., 67(22), (2007) 11037-11044.  
  48. A.U. Neumann. Control of the Immune Response by a Threshold Automata Model on A Lattice, Physica A : Statistical Mechanics and Its Applications, 162, (1989) 1-19.  
  49. L. Novellino, C. Castelli, G. Parmiani. A listing of human tumor antigens recognized by T cells, Cancer Immunol Immunother54 (2005) 187-207.  
  50. M.J. Palmowski, E.M. Choi, I.F. Hermans, S.C. Gilbert, J.L. Chen, U. Gileadi, M. Salio, A. Van Pel, S. Man, E. Bonin, P. Liljestrom, P.R. Dunbar, V. Cerundolo. Competition between CTL narrows the immune response induced by prime-boost vaccination protocols, J Immunol. 168, (2002) 4391-4398.  
  51. A. Palladini, G. Nicoletti, F. Pappalardo, A. Murgo, V. Grosso, V. Stivani, M.L. Ianzano, A. Antognoli, S. Croci, L. Landuzzi, C. De Giovanni, P. Nanni, S. Motta, P.-L. Lollini. In silico modeling and in vivo efficacy of cancer preventive vaccinations, Cancer Research, 70(20), (2010) 7755-7763.  
  52. F. Pappalardo, F. Castiglione, P.-L. Lollini, S. Motta. Modelling and Simulation of Cancer Immunoprevention Vaccine, Bioinformatics, 21 :12, (2005) 2891-2897.  
  53. F. Pappalardo, S. Motta, P.-L. Lollini, E. Mastriani. Analysis of vaccine’s schedules using models, Cellular Immunology, 244, (2006) 137-140.  
  54. F. Pappalardo, M.D. Halling-Brown, N. Rapin, P. Zhang, et al.ImmunoGrid, an integrative environment for large-scale simulation of the immune system for vaccine discovery, design, and optimization, Briefings in Bioinformatics, 10: 3, (2009) 330-340.  
  55. F. Pappalardo, M. Pennisi, F. Castiglione, S. Motta. Vaccine protocols optimization : in silico experiences, Biotechnology Advances, 28, (2010) 82-93.  
  56. F. 1 Pappalardo, I.M. Forero, M. Pennisi, A. Palazon, I. Melero, S. Motta. SimB16 : modeling the combined anti-tumor effects of anti-CD137 monoclonal antibodies and adoptive T cell therapy against a mouse melanoma model, BMC Cancer, submitted, (2011).  
  57. C.R. Parish. Cancer immunotherapy : the past, the present and the future, Immunology and Cell Biology, 81(2), (2003) 106-113.  
  58. M. Pennisi, F. Pappalardo, A. Palladini, G. Nicoletti, P.Nanni, P.-L. Lollini, S. Motta. Modeling the competition between lung metastases and the immune system using agents, BMC Bioinformatics, 11(Suppl 7) :S13, (2010) doi :.  URI10.1186/1471-2105-11-S7-S13
  59. M. Pennisi, C.Bianca, F. Pappalardo, S. Motta. Modeling artificial immunity against mammary carcinoma, Proceedings of the 10th International Conference on Mathematical Methods in Science and Engineering (CMMSE 2010), ISBN 978- 84-613-5510-5, (2010) 753-756.  
  60. M. Pennisi, C. Bianca, F. Pappalardo, S. Motta. Compartmental mathematical modeling of immune system - melanoma competition, Proceedings of the 10th International Conference on Mathematical Methods in Science and Engineering (CMMSE 2011), ISBN 978-84-614-6167-7, (2011) 930-934.  
  61. A.S. Perelson, G. Weisbuch. Immunology for physicists. Reviews of Moddern Physics, 69, (1997) 1219-1267.  
  62. A.M. Smith, A.S. Perelson. Influenza A virus infection kinetics : quantitative data and models, WIREs Syst Biol Med, 3(4), (2011) 429-445.  
  63. H. Van Poppel, S. Joniau, S.W. Van Gool. Vaccine therapy in patients with renal cell carcinoma, European Urology, 55(6), (2009) 1333-1344.  
  64. J. Rice, S. Buchan, F. Stevenson. Critical components of a DNA fusion vaccine able to induce protective cytotoxic T cells against a single epitope of a tumor antigen, J. Immunol. 169, (2002) 3908-3913.  
  65. S.A. Rosenberg. Progress in human tumour immunology and immunotherapy, Nature, 411(6835), (2001) 380-384.  
  66. S.A. Rosenberg, J.C. Yang, N.P. Restifo. Cancer immunotherapy : moving beyond current vaccines, Nat Med10 (2004) 909-915.  
  67. E. Sercarz, A.H. Coons. The Exhaustion of Specific Antibody Producing Capacity During A Secondary Response, In Mechanisms of Immunological Tolerance Conference. (eds.), Academia Prague, (1962) 78-83.  
  68. H.B. Sieburg. A Logical Dynamic Systems Approach to the Regulation of Antigen-Driven Lymphocyte Stimulation, in Theoretical Immunology : Part I. A. S. Perelson (eds.), (1992) 273-293.  
  69. D.J. Slamon, W. Godolphin, L.A. Jones, J.A. Holt, S.G. Wong, D.E. Keith, W.J. Levin, S.G. Stuart, J. Udove, A. Ullrich. Studies of the HER-2/neu protooncogene in human breast and ovarian cancer, Science244 (1989) 707-712.  
  70. A.L. Smith, M.E Wikstrom, B. Fazekas de St Groth,. Visualizing T cell competition for peptide/MHC complexes : a specific mechanism to minimize the effect of precursor frequency, Immunity13, (2000) 783-794.  
  71. D. Stauffer, R. Pandey. Immunologically Motivated Simulations of Cellular Automata, Computers in Physics. 6(4), (1992) 404.  
  72. J. Ŝterzl. Factors Determining the Differentiation Pathways of Immunocompetent Cells, Cold Spring Harb Symp Quant Biol. 32, (1967) 493-506.  
  73. B. Stockinger, T. Barthlott, G. Kassiotis. T cell regulation : a special job or everyone’s responsibility ?, Nat. Immunol. 2, (2001) 757-758.  
  74. J. Ursini-Siegel, B. Schade, R.D. Cardiff, W.J. Muller. Insights from transgenic mouse models of ERBB2-induced breast cancer, Nat Rev Cancer7 (2007) 389-397.  
  75. K.E. de Visser, E. Eichten, L.M. Coussens. Paradoxical roles of the immune system during cancer development, Nature Reviews Cancer, 6(1), (2006) 24-37.  
  76. L.M. Weiner, R. Surana, S. Wang. Monoclonal anti- bodies : versatile platforms for cancer immunotherapy, Nature Reviews Immunology, 10(5), (2010) 317-327.  
  77. G. Weisbuch, H. Atlan. Control of the Immune Response, Journal of Physics A : Mathematical and General. 21, (1988) L189-L192.  
  78. S. Wolfram. Theory and Applications of Cellular Automata, Redwood City, CA : Addison-Wesley (1986).  
  79. J.W. Yewdell, J.R. Bennink. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses, Annu. Rev. Immunol. 17, (1999) 51-88.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.