Cramér type moderate deviations for Studentized U-statistics******

Tze Leng Lai; Qi-Man Shao; Qiying Wang

ESAIM: Probability and Statistics (2012)

  • Volume: 15, page 168-179
  • ISSN: 1292-8100

Abstract

top
Let Tn be a Studentized U-statistic. It is proved that a Cramér type moderate deviation P(Tn ≥ x)/(1 − Φ(x)) → 1 holds uniformly in x∈ [0, o(n1/6)) when the kernel satisfies some regular conditions.

How to cite

top

Lai, Tze Leng, Shao, Qi-Man, and Wang, Qiying. "Cramér type moderate deviations for Studentized U-statistics******." ESAIM: Probability and Statistics 15 (2012): 168-179. <http://eudml.org/doc/222449>.

@article{Lai2012,
abstract = { Let Tn be a Studentized U-statistic. It is proved that a Cramér type moderate deviation P(Tn ≥ x)/(1 − Φ(x)) → 1 holds uniformly in x∈ [0, o(n1/6)) when the kernel satisfies some regular conditions. },
author = {Lai, Tze Leng, Shao, Qi-Man, Wang, Qiying},
journal = {ESAIM: Probability and Statistics},
keywords = {Moderate deviation; u-statistic; studentized; moderate deviation; -statistic; Studentized statistic},
language = {eng},
month = {1},
pages = {168-179},
publisher = {EDP Sciences},
title = {Cramér type moderate deviations for Studentized U-statistics******},
url = {http://eudml.org/doc/222449},
volume = {15},
year = {2012},
}

TY - JOUR
AU - Lai, Tze Leng
AU - Shao, Qi-Man
AU - Wang, Qiying
TI - Cramér type moderate deviations for Studentized U-statistics******
JO - ESAIM: Probability and Statistics
DA - 2012/1//
PB - EDP Sciences
VL - 15
SP - 168
EP - 179
AB - Let Tn be a Studentized U-statistic. It is proved that a Cramér type moderate deviation P(Tn ≥ x)/(1 − Φ(x)) → 1 holds uniformly in x∈ [0, o(n1/6)) when the kernel satisfies some regular conditions.
LA - eng
KW - Moderate deviation; u-statistic; studentized; moderate deviation; -statistic; Studentized statistic
UR - http://eudml.org/doc/222449
ER -

References

top
  1. I.B. Alberink and V. Bentkus, Berry-Esseen bounds for von-Mises and U-statistics. Lith. Math. J.41 (2001) 1–16.  
  2. I.B. Alberink and V. Bentkus, Lyapunov type bounds for U-statistics. Theory Probab. Appl.46 (2002) 571–588.  
  3. J.N. Arvesen, Jackknifing U-statistics. Ann. Math. Statist.40 (1969) 2076–2100.  
  4. Y.V. Borovskikh and N.C. Weber, Large deviations of U-statistics I. Lietuvos Matematikos Rinkinys43 (2003) 13–37.  
  5. Y.V. Borovskikh and N.C. Weber, Large deviations of U-statistics I. Lietuvos Matematikos Rinkinys43 (2003) 294–316.  
  6. H. Callaert and N. Veraverbeke, The order of the normal approximation for a studentized U-statistics. Ann. Statist.9 (1981) 194–200.  
  7. W. Hoeffding, A class of statistics with asymptotically normal distribution. Ann. Math. Statist.19 (1948) 293–325.  
  8. B.-Y. Jing, Q.M. Shao and Q. Wang, Self-normalized Cramér-type large deviation for independent random variables. Ann. Probab.31 (2003) 2167–2215.  
  9. B.-Y. Jing, Q.M. Shao, W. Zhou, Saddlepoint approximation for Student's t-statistic with no moment conditions. Ann. Statist.32 (2004) 2679–2711.  
  10. V.S. Koroljuk and V. Yu. Borovskich, Theory of U-statistics. Kluwer Academic Publishers, Dordrecht (1994).  
  11. Q.M. Shao, Self-normalized large deviations. Ann. Probab.25 (1997) 285–328.  
  12. Q.M. Shao, Cramér-type large deviation for Student's t statistic. J. Theorect. Probab.12 (1999) 387–398.  
  13. V.H. De La Pena, M.J. Klass and T.L. Lai, Self-normalized processes: exponential inequalities, moment bound and iterated logarithm laws. Ann. Probab.32 (2004) 1902–1933.  
  14. M. Vardemaele and N. Veraverbeke, Cramer type large deviations for studentized U-statistics. Metrika32 (1985) 165–180.  
  15. Q. Wang, Bernstein type inequalities for degenerate U-statistics with applications. Ann. Math. Ser. B19 (1998) 157–166.  
  16. Q. Wang, B.-Y. Jing and L. Zhao, The Berry-Esséen bound for studentized statistics. Ann. Probab.28 (2000) 511–535.  
  17. Q. Wang and N.C. Weber, Exact convergence rate and leading term in the central limit theorem for U-statistics. Statist. Sinica16 (2006) 1409–1422.  
  18. L. Zhao, The rate of the normal approximation for a studentized U-statistic. Science Exploration3 (1983) 45–52.  

NotesEmbed ?

top

You must be logged in to post comments.