# Dislocation measure of the fragmentation of a general Lévy tree

ESAIM: Probability and Statistics (2012)

- Volume: 15, page 372-389
- ISSN: 1292-8100

## Access Full Article

top## Abstract

top## How to cite

topVoisin, Guillaume. "Dislocation measure of the fragmentation of a general Lévy tree." ESAIM: Probability and Statistics 15 (2012): 372-389. <http://eudml.org/doc/222455>.

@article{Voisin2012,

abstract = {
Given a general critical or sub-critical branching mechanism and its associated Lévy continuum random tree, we consider a pruning procedure on this tree using a Poisson snake. It defines a fragmentation process on the tree. We compute the family of dislocation measures associated with this fragmentation. This work generalizes the work made for a Brownian tree [R. Abraham and L. Serlet, Elect. J. Probab.7 (2002) 1–15] and for a tree without Brownian part [R. Abraham and J.-F. Delmas, Probab. Th. Rel. Fiel141 (2008) 113–154].
},

author = {Voisin, Guillaume},

journal = {ESAIM: Probability and Statistics},

keywords = {Fragmentation; Lévy CRT; fragmentation},

language = {eng},

month = {1},

pages = {372-389},

publisher = {EDP Sciences},

title = {Dislocation measure of the fragmentation of a general Lévy tree},

url = {http://eudml.org/doc/222455},

volume = {15},

year = {2012},

}

TY - JOUR

AU - Voisin, Guillaume

TI - Dislocation measure of the fragmentation of a general Lévy tree

JO - ESAIM: Probability and Statistics

DA - 2012/1//

PB - EDP Sciences

VL - 15

SP - 372

EP - 389

AB -
Given a general critical or sub-critical branching mechanism and its associated Lévy continuum random tree, we consider a pruning procedure on this tree using a Poisson snake. It defines a fragmentation process on the tree. We compute the family of dislocation measures associated with this fragmentation. This work generalizes the work made for a Brownian tree [R. Abraham and L. Serlet, Elect. J. Probab.7 (2002) 1–15] and for a tree without Brownian part [R. Abraham and J.-F. Delmas, Probab. Th. Rel. Fiel141 (2008) 113–154].

LA - eng

KW - Fragmentation; Lévy CRT; fragmentation

UR - http://eudml.org/doc/222455

ER -

## References

top- R. Abraham and J.-F. Delmas, Fragmentation associated with Lévy processes using snake. Probab. Th. Rel. Fiel141 (2008) 113–154. Zbl1142.60048
- R. Abraham, J.-F. Delmas and G. Voisin, Pruning a Lévy random continuum tree. preprint Zbl1231.60073
- R. Abraham and L. Serlet, Poisson snake and fragmentation. Elect. J. Probab.7 (2002) 1–15. Zbl1015.60046
- D. Aldous, The continuum random tree II: an overview. Proc. Durham Symp. Stochastic Analysis. Cambridge univ. press edition (1990) 23–70. Zbl0791.60008
- D. Aldous, The continuum random tree I. Ann. Probab.19 (1991) 1–28. Zbl0722.60013
- D. Aldous, The continuum random tree III. Ann. Probab.21 (1993) 248–289. Zbl0791.60009
- D. Aldous and J. Pitman, Inhomogeneous continuum trees and the entrance boundary of the additive coalescent. Probab. Th. Rel. Fields118 (2000) 455–482. Zbl0969.60015
- D. Aldous and J. Piman, The standard additive coalescent. Ann. Probab.26 (1998) 1703–1726. Zbl0936.60064
- J. Bertoin, Lévy processes. Cambridge University Press, Cambridge (1996). Zbl0861.60003
- J. Bertoin, Random fragmentation and coagulation processes, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge 102 (2006). Zbl1107.60002
- D.A. Dawson, Measure-valued Markov processes, in École d'été de Probabilités de Saint-Flour 1991, Lect. Notes Math. Springer Verlag, Berlin 1541 (1993) 1–260.
- J.-F. Delmas, Height process for super-critical continuous state branching process. Markov Proc. Rel. Fields.14 (2008) 309–326. Zbl1149.60057
- T. Duquesne and J.-F. Le Gall, Random trees, Lévy processes and spatial branching processes281. Astérisque (2002). Zbl1037.60074
- T. Duquesne and J.-F. Le Gall, Probabilistic and fractal aspects of Lévy trees, Probab. Th. Rel. Fields131 (2005) 553–603. Zbl1070.60076
- T. Duquesne and M. Winkel, Growth of Lévy trees. Probab. Th. Rel. Fields139 (2007) 313–371. Zbl1126.60068
- M. Jirina, Stochastic branching processes with continuous state space. Czech. Math. J.83 (1958) 292–312. Zbl0168.38602
- J. Lamperti, The limit of a sequence of branching processes. Z. Wahrscheinlichkeitstheorie Verw. Gebiete7 (1967) 271–288. Zbl0154.42603
- J.-F. Le Gall, Spatial branching processes, random snakes and partial differential equations. Birkhäuser Verlag, Basel (1999). Zbl0938.60003
- J.-F. Le Gall and Y. Le Jan, Branching processes in Lévy processes: the exploration process. Ann. Probab.26 (1998) 213–252. Zbl0948.60071
- K.R. Parthasarathy, Probability measures on metric spaces. Probability and Mathematical Statistics3, Academic, New York (1967). Zbl0153.19101

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.