Lp-theory for the stochastic heat equation with infinite-dimensional fractional noise*
ESAIM: Probability and Statistics (2012)
- Volume: 15, page 110-138
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topBalan, Raluca M.. "Lp-theory for the stochastic heat equation with infinite-dimensional fractional noise*." ESAIM: Probability and Statistics 15 (2012): 110-138. <http://eudml.org/doc/222479>.
@article{Balan2012,
abstract = {
In this article, we consider the stochastic heat equation $du=(\Delta u+f(t,x))\{\rm d\}t+ \sum_\{k=1\}^\{\infty\} g^\{k\}(t,x) \delta \beta_t^k, t \in [0,T]$, with random coefficients f and gk,
driven by a sequence (βk)k of i.i.d. fractional Brownian
motions of index H>1/2. Using the Malliavin calculus techniques
and a p-th moment maximal inequality for the infinite sum of
Skorohod integrals with respect to (βk)k, we prove that the
equation has a unique solution (in a Banach space of summability
exponent p ≥ 2), and this solution is Hölder continuous in
both time and space.
},
author = {Balan, Raluca M.},
journal = {ESAIM: Probability and Statistics},
keywords = {Fractional Brownian motion; Skorohod integral; maximal inequality; stochastic heat equation; fractional Brownian motion},
language = {eng},
month = {1},
pages = {110-138},
publisher = {EDP Sciences},
title = {Lp-theory for the stochastic heat equation with infinite-dimensional fractional noise*},
url = {http://eudml.org/doc/222479},
volume = {15},
year = {2012},
}
TY - JOUR
AU - Balan, Raluca M.
TI - Lp-theory for the stochastic heat equation with infinite-dimensional fractional noise*
JO - ESAIM: Probability and Statistics
DA - 2012/1//
PB - EDP Sciences
VL - 15
SP - 110
EP - 138
AB -
In this article, we consider the stochastic heat equation $du=(\Delta u+f(t,x)){\rm d}t+ \sum_{k=1}^{\infty} g^{k}(t,x) \delta \beta_t^k, t \in [0,T]$, with random coefficients f and gk,
driven by a sequence (βk)k of i.i.d. fractional Brownian
motions of index H>1/2. Using the Malliavin calculus techniques
and a p-th moment maximal inequality for the infinite sum of
Skorohod integrals with respect to (βk)k, we prove that the
equation has a unique solution (in a Banach space of summability
exponent p ≥ 2), and this solution is Hölder continuous in
both time and space.
LA - eng
KW - Fractional Brownian motion; Skorohod integral; maximal inequality; stochastic heat equation; fractional Brownian motion
UR - http://eudml.org/doc/222479
ER -
References
top- E. Alòs, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes. Ann. Probab.29 (2001) 766–801.
- E. Alòs and D. Nualart, Stochastic integration with respect to the fractional Brownian motion. Stoch. Stoch. Rep.75 (2003) 129–152.
- R.M. Balan and C.A. Tudor, The stochastic heat equation with a fractional-colored noise: existence of the solution. Latin Amer. J. Probab. Math. Stat.4 (2008) 57–87.
- P. Carmona and L. Coutin, Stochastic integration with respect to fractional Brownian motion. Ann. Inst. Poincaré, Probab. & Stat.39 (2003) 27–68.
- G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge University Press (1992).
- L. Decreusefond and A.S. Ustünel, Stochastic analysis of the fractional Brownian motion. Potent. Anal.10 (1999) 177–214.
- T.E. Duncan, Y. Hu and B. Pasik-Duncan, Stochstic calculus for fractional Brownian motion I. theory. SIAM J. Contr. Optim.38 (2000) 582–612.
- W. Grecksch and V.V. Anh, A parabolic stochastic differential equation with fractional Brownian motion input. Stat. Probab. Lett.41 (1999) 337–346.
- Y. Hu, Integral transformations and anticipative calculus for fractional Brownian motions. Memoirs AMS175 (2005) viii+127.
- G. Kallianpur and J. Xiong, Stochastic Differential Equations in Infinite Dimensional Spaces. IMS Lect. Notes 26, Hayward, CA (1995).
- N.V. Krylov, A generalization of the Littlewood-Paley inequality and some other results related to stochstic partial differential equations. Ulam Quarterly2 (1994) 16–26.
- N.V. Krylov, On Lp-theory of stochastic partial differential equations in the whole space. SIAM J. Math. Anal.27 (1996) 313–340
- N.V. Krylov, An analytic approach to SPDEs. In Stochastic partial differential equations: six perspectives. Math. Surveys Monogr.64 (1999) 185–242 AMS, Providence, RI.
- N.V. Krylov, On the foundation of the L p-theory of stochastic partial differential equations. In “Stochastic partial differential equations and application VII”. Chapman & Hall, CRC (2006) 179–191.
- T. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoamericana14 (1998) 215–310.
- T. Lyons and Z. Qian, System Control and Rough Paths. Oxford University Press (2002).
- B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion. J. Funct. Anal.202 (2003) 277–305.
- D. Nualart, Analysis on Wiener space and anticipative stochastic calculus. Lect. Notes. Math.1690 (1998) 123–227.
- D. Nualart, Stochastic integration with respect to fractional Brownian motion and applications. Contem. Math.336 (2003) 3–39.
- D. Nualart, Malliavin Calculus and Related Topics, Second Edition. Springer-Verlag, Berlin.
- D. Nualart and P.-A. Vuillermot, Variational solutions for partial differential equations driven by fractional a noise. J. Funct. Anal.232 (2006) 390–454.
- B.L. Rozovskii, Stochastic evolution systems. Kluwer, Dordrecht (1990).
- M. Sanz-Solé and P.-A. Vuillermot, Mild solutions for a class of fractional SPDE's and their sample paths (2007). Preprint available at URIhttp://www.arxiv.org/pdf/0710.5485
- E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970).
- S. Tindel, C.A. Tudor, and F. Viens, Stochastic evolution equations with fractional Brownian motion. Probab. Th. Rel. Fields127 (2003) 186–204.
- J.B. Walsh, An introduction to stochastic partial differential equations. École d'Été de Probabilités de Saint-Flour XIV. Lecture Notes in Math.1180 (1986) 265–439. Springer, Berlin.
- M. Zähle, Integration with respect to fractal functions and stochastic calculus I. Probab. Th. Rel. Fields111 (1998) 333–374.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.