Einstein manifolds of positive scalar curvature with arbitrary second Betti number.
Boyer, Charles P.; Galicki, Krzysztof; Mann, Benjamin M.; Rees, Elmer G.
Balkan Journal of Geometry and its Applications (BJGA) (1996)
- Volume: 1, Issue: 2, page 1-7
- ISSN: 1224-2780
Access Full Article
topHow to cite
topBoyer, Charles P., et al. "Einstein manifolds of positive scalar curvature with arbitrary second Betti number.." Balkan Journal of Geometry and its Applications (BJGA) 1.2 (1996): 1-7. <http://eudml.org/doc/226919>.
@article{Boyer1996,
author = {Boyer, Charles P., Galicki, Krzysztof, Mann, Benjamin M., Rees, Elmer G.},
journal = {Balkan Journal of Geometry and its Applications (BJGA)},
keywords = {Betti numbers; 3-Sasakian manifolds; self-dual orbifolds; existence of Einstein metrics; positive scalar curvature},
language = {eng},
number = {2},
pages = {1-7},
publisher = {Balkan Society of Geometers, Bucharest; Geometry Balkan Press},
title = {Einstein manifolds of positive scalar curvature with arbitrary second Betti number.},
url = {http://eudml.org/doc/226919},
volume = {1},
year = {1996},
}
TY - JOUR
AU - Boyer, Charles P.
AU - Galicki, Krzysztof
AU - Mann, Benjamin M.
AU - Rees, Elmer G.
TI - Einstein manifolds of positive scalar curvature with arbitrary second Betti number.
JO - Balkan Journal of Geometry and its Applications (BJGA)
PY - 1996
PB - Balkan Society of Geometers, Bucharest; Geometry Balkan Press
VL - 1
IS - 2
SP - 1
EP - 7
LA - eng
KW - Betti numbers; 3-Sasakian manifolds; self-dual orbifolds; existence of Einstein metrics; positive scalar curvature
UR - http://eudml.org/doc/226919
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.