# A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: announcement of results.

Delshams, Amadeu; de la Llave, Rafael; Seara, Tere M.

Electronic Research Announcements of the American Mathematical Society [electronic only] (2003)

- Volume: 9, page 125-134
- ISSN: 1079-6762

## Access Full Article

top## How to cite

topDelshams, Amadeu, de la Llave, Rafael, and Seara, Tere M.. "A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: announcement of results.." Electronic Research Announcements of the American Mathematical Society [electronic only] 9 (2003): 125-134. <http://eudml.org/doc/227370>.

@article{Delshams2003,

author = {Delshams, Amadeu, de la Llave, Rafael, Seara, Tere M.},

journal = {Electronic Research Announcements of the American Mathematical Society [electronic only]},

keywords = {Nearly integrable Hamiltonian systems; normal forms; slow variables; normally hyperbolic invariant manifolds; KAM theory; Arnold diffusion},

language = {eng},

pages = {125-134},

publisher = {American Mathematical Society, Providence},

title = {A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: announcement of results.},

url = {http://eudml.org/doc/227370},

volume = {9},

year = {2003},

}

TY - JOUR

AU - Delshams, Amadeu

AU - de la Llave, Rafael

AU - Seara, Tere M.

TI - A geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: announcement of results.

JO - Electronic Research Announcements of the American Mathematical Society [electronic only]

PY - 2003

PB - American Mathematical Society, Providence

VL - 9

SP - 125

EP - 134

LA - eng

KW - Nearly integrable Hamiltonian systems; normal forms; slow variables; normally hyperbolic invariant manifolds; KAM theory; Arnold diffusion

UR - http://eudml.org/doc/227370

ER -