Degree of convergence of iterative algorithms for boundedly Lipschitzian strong pseudocontractions.
He, Songnian; Su, Yongfu; Li, Ronghua
Fixed Point Theory and Applications [electronic only] (2010)
- Volume: 2010, page Article ID 210340, 14 p.-Article ID 210340, 14 p.
- ISSN: 1687-1812
Access Full Article
topHow to cite
topHe, Songnian, Su, Yongfu, and Li, Ronghua. "Degree of convergence of iterative algorithms for boundedly Lipschitzian strong pseudocontractions.." Fixed Point Theory and Applications [electronic only] 2010 (2010): Article ID 210340, 14 p.-Article ID 210340, 14 p.. <http://eudml.org/doc/228374>.
@article{He2010,
author = {He, Songnian, Su, Yongfu, Li, Ronghua},
journal = {Fixed Point Theory and Applications [electronic only]},
keywords = {Hilbert space; pseudo-contraction; fixed point; iterative algorithms; convergence; numerical results},
language = {eng},
pages = {Article ID 210340, 14 p.-Article ID 210340, 14 p.},
publisher = {Springer International Publishing},
title = {Degree of convergence of iterative algorithms for boundedly Lipschitzian strong pseudocontractions.},
url = {http://eudml.org/doc/228374},
volume = {2010},
year = {2010},
}
TY - JOUR
AU - He, Songnian
AU - Su, Yongfu
AU - Li, Ronghua
TI - Degree of convergence of iterative algorithms for boundedly Lipschitzian strong pseudocontractions.
JO - Fixed Point Theory and Applications [electronic only]
PY - 2010
PB - Springer International Publishing
VL - 2010
SP - Article ID 210340, 14 p.
EP - Article ID 210340, 14 p.
LA - eng
KW - Hilbert space; pseudo-contraction; fixed point; iterative algorithms; convergence; numerical results
UR - http://eudml.org/doc/228374
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.