# A combinatorial formula for orthogonal idempotents in the 0-Hecke algebra of the symmetric group.

The Electronic Journal of Combinatorics [electronic only] (2011)

- Volume: 18, Issue: 1, page Research Paper P28, 20 p., electronic only-Research Paper P28, 20 p., electronic only
- ISSN: 1077-8926

## Access Full Article

top## How to cite

topDenton, Tom. "A combinatorial formula for orthogonal idempotents in the 0-Hecke algebra of the symmetric group.." The Electronic Journal of Combinatorics [electronic only] 18.1 (2011): Research Paper P28, 20 p., electronic only-Research Paper P28, 20 p., electronic only. <http://eudml.org/doc/230733>.

@article{Denton2011,

author = {Denton, Tom},

journal = {The Electronic Journal of Combinatorics [electronic only]},

keywords = {0-Hecke algebras; symmetric groups; Iwahori-Hecke algebras; branching rules; simple representations; projective indecomposable modules; orthogonal idempotents; indecomposable modules; Dynkin diagrams},

language = {eng},

number = {1},

pages = {Research Paper P28, 20 p., electronic only-Research Paper P28, 20 p., electronic only},

publisher = {Prof. André Kündgen, Deptartment of Mathematics, California State University San Marcos, San Marcos},

title = {A combinatorial formula for orthogonal idempotents in the 0-Hecke algebra of the symmetric group.},

url = {http://eudml.org/doc/230733},

volume = {18},

year = {2011},

}

TY - JOUR

AU - Denton, Tom

TI - A combinatorial formula for orthogonal idempotents in the 0-Hecke algebra of the symmetric group.

JO - The Electronic Journal of Combinatorics [electronic only]

PY - 2011

PB - Prof. André Kündgen, Deptartment of Mathematics, California State University San Marcos, San Marcos

VL - 18

IS - 1

SP - Research Paper P28, 20 p., electronic only

EP - Research Paper P28, 20 p., electronic only

LA - eng

KW - 0-Hecke algebras; symmetric groups; Iwahori-Hecke algebras; branching rules; simple representations; projective indecomposable modules; orthogonal idempotents; indecomposable modules; Dynkin diagrams

UR - http://eudml.org/doc/230733

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.