Sur l’intégrale définie 0 1 2 π log ( 1 + n sin 2 ϕ ) d ϕ 1 - k 2 sin 2 ϕ .

Roberts, William

Journal de Mathématiques Pures et Appliquées (1846)

  • page 471-476
  • ISSN: 0021-7874

How to cite

top

Roberts, William. "Sur l’intégrale définie $\int _0^{{1\over 2}\pi }{\log (1+n\sin ^2\varphi )d\varphi \over \sqrt{1-k^2\sin ^2\varphi }}$.." Journal de Mathématiques Pures et Appliquées (1846): 471-476. <http://eudml.org/doc/234307>.

@article{Roberts1846,
author = {Roberts, William},
journal = {Journal de Mathématiques Pures et Appliquées},
language = {fre},
pages = {471-476},
title = {Sur l’intégrale définie $\int _0^\{\{1\over 2\}\pi \}\{\log (1+n\sin ^2\varphi )d\varphi \over \sqrt\{1-k^2\sin ^2\varphi \}\}$.},
url = {http://eudml.org/doc/234307},
year = {1846},
}

TY - JOUR
AU - Roberts, William
TI - Sur l’intégrale définie $\int _0^{{1\over 2}\pi }{\log (1+n\sin ^2\varphi )d\varphi \over \sqrt{1-k^2\sin ^2\varphi }}$.
JO - Journal de Mathématiques Pures et Appliquées
PY - 1846
SP - 471
EP - 476
LA - fre
UR - http://eudml.org/doc/234307
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.