On a certain class of always convergent sequences and the Rayleigh quotient iterations

Tomáš Kojecký

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1988)

  • Volume: 27, Issue: 1, page 85-90
  • ISSN: 0231-9721

How to cite

top

Kojecký, Tomáš. "On a certain class of always convergent sequences and the Rayleigh quotient iterations." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 27.1 (1988): 85-90. <http://eudml.org/doc/23489>.

@article{Kojecký1988,
author = {Kojecký, Tomáš},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Rayleigh quotient iteration; spectral radius},
language = {eng},
number = {1},
pages = {85-90},
publisher = {Palacký University Olomouc},
title = {On a certain class of always convergent sequences and the Rayleigh quotient iterations},
url = {http://eudml.org/doc/23489},
volume = {27},
year = {1988},
}

TY - JOUR
AU - Kojecký, Tomáš
TI - On a certain class of always convergent sequences and the Rayleigh quotient iterations
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 1988
PB - Palacký University Olomouc
VL - 27
IS - 1
SP - 85
EP - 90
LA - eng
KW - Rayleigh quotient iteration; spectral radius
UR - http://eudml.org/doc/23489
ER -

References

top
  1. Bourbaki N., Integrirovanie, Nauka, Moskva 1967. (1967) Zbl0156.06001MR0223524
  2. Dunford N., Schwartz J. T., Linejnye operatory I, II, Mir, Moskva 1962, 1966. (1962) MR0216304
  3. Rudin W., Principles of mathematical analysis, Mc Graw-Hill, Inc. New York 1964. (1964) Zbl0148.02903MR0166310
  4. Rudin W., Real and complex analysis, Mc Graw-Hill, Inc. New York І974. Zbl1038.00002
  5. Kojecký T., Some results about convergence of Kellogg's iterations in eigenvalue problems, Czech. Math. Jouгnal (to appear). 
  6. Kojecký T., Iterační procesy Kelloggova typu, kandidátská disertační práce, Olomouc 1981. (1981) 
  7. Kolomý J., Approximate determination of eigenvalues and eigenvectors of self-adjoint operators, Ann. Math. Pol 38 (1980). (1980) MR0599239

NotesEmbed ?

top

You must be logged in to post comments.