# An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1995)

- Volume: 34, Issue: 1, page 155-166
- ISSN: 0231-9721

## Access Full Article

top## How to cite

topStaněk, Svatoslav. "An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 34.1 (1995): 155-166. <http://eudml.org/doc/23604>.

@article{Staněk1995,

author = {Staněk, Svatoslav},

journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},

keywords = {existence; uniqueness; boundary value problem; Leray-Schauder degree theory; fourth-order one-parameter functional differential equations; quasilinearization technique; Schauder fixed point theorem},

language = {eng},

number = {1},

pages = {155-166},

publisher = {Palacký University Olomouc},

title = {An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter},

url = {http://eudml.org/doc/23604},

volume = {34},

year = {1995},

}

TY - JOUR

AU - Staněk, Svatoslav

TI - An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter

JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

PY - 1995

PB - Palacký University Olomouc

VL - 34

IS - 1

SP - 155

EP - 166

LA - eng

KW - existence; uniqueness; boundary value problem; Leray-Schauder degree theory; fourth-order one-parameter functional differential equations; quasilinearization technique; Schauder fixed point theorem

UR - http://eudml.org/doc/23604

ER -

## References

top- Fabry, Ch., Habets P., The Picard boundary value problem for nonlinear second order vector differential equations, J. Differential Equations 42 (1981), 186-198. (1981) Zbl0439.34018MR0641647
- Hartman P., Ordinary Differential Equations, Wiley-Interscience, New York, 1964. (1964) Zbl0125.32102MR0171038
- Pachpatte B. G., On certain boundary value problem for third order differential equations, An. st. Univ. Iasi, f. 1, s. Ia, Mat. (1986), 61-74. (1986)
- Staněk S., Three-point boundary value problem for nonlinear third-order differential equations with parameter, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 100, Math. 30 (1991), 61-74. (1991) MR1166426
- Staněk S., On a class of functional boundary value problems for nonlinear third-order functional differential equations depending on the parameter, Arch. Math. 62 (1994), 462-469. (1994) Zbl0801.34065MR1274754
- Staněk S., Leray-Schauder degree method in functional boundary value problems depending on the parameter, Math. Nach. 164 (1993), 333-344. (1993) Zbl0805.34053MR1251473

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.