An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1995)
- Volume: 34, Issue: 1, page 155-166
- ISSN: 0231-9721
Access Full Article
topHow to cite
topStaněk, Svatoslav. "An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 34.1 (1995): 155-166. <http://eudml.org/doc/23604>.
@article{Staněk1995,
author = {Staněk, Svatoslav},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {existence; uniqueness; boundary value problem; Leray-Schauder degree theory; fourth-order one-parameter functional differential equations; quasilinearization technique; Schauder fixed point theorem},
language = {eng},
number = {1},
pages = {155-166},
publisher = {Palacký University Olomouc},
title = {An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter},
url = {http://eudml.org/doc/23604},
volume = {34},
year = {1995},
}
TY - JOUR
AU - Staněk, Svatoslav
TI - An application of the Leray-Schauder degree theory to boundary value problem for third and fourth order differential equations depending on the parameter
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 1995
PB - Palacký University Olomouc
VL - 34
IS - 1
SP - 155
EP - 166
LA - eng
KW - existence; uniqueness; boundary value problem; Leray-Schauder degree theory; fourth-order one-parameter functional differential equations; quasilinearization technique; Schauder fixed point theorem
UR - http://eudml.org/doc/23604
ER -
References
top- Fabry, Ch., Habets P., The Picard boundary value problem for nonlinear second order vector differential equations, J. Differential Equations 42 (1981), 186-198. (1981) Zbl0439.34018MR0641647
- Hartman P., Ordinary Differential Equations, Wiley-Interscience, New York, 1964. (1964) Zbl0125.32102MR0171038
- Pachpatte B. G., On certain boundary value problem for third order differential equations, An. st. Univ. Iasi, f. 1, s. Ia, Mat. (1986), 61-74. (1986)
- Staněk S., Three-point boundary value problem for nonlinear third-order differential equations with parameter, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 100, Math. 30 (1991), 61-74. (1991) MR1166426
- Staněk S., On a class of functional boundary value problems for nonlinear third-order functional differential equations depending on the parameter, Arch. Math. 62 (1994), 462-469. (1994) Zbl0801.34065MR1274754
- Staněk S., Leray-Schauder degree method in functional boundary value problems depending on the parameter, Math. Nach. 164 (1993), 333-344. (1993) Zbl0805.34053MR1251473
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.