Solvability of nonlinear functional boundary value problems

Staněk, Svatoslav

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1996)

  • Volume: 35, Issue: 1, page 149-158
  • ISSN: 0231-9721

How to cite

top

Staněk, Svatoslav. "Solvability of nonlinear functional boundary value problems." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 35.1 (1996): 149-158. <http://eudml.org/doc/23621>.

@article{Staněk1996,
author = {Staněk, Svatoslav},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {boundary value problem; functional-differential equations; existence; Leray-Schauder degree},
language = {eng},
number = {1},
pages = {149-158},
publisher = {Palacký University Olomouc},
title = {Solvability of nonlinear functional boundary value problems},
url = {http://eudml.org/doc/23621},
volume = {35},
year = {1996},
}

TY - JOUR
AU - Staněk, Svatoslav
TI - Solvability of nonlinear functional boundary value problems
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 1996
PB - Palacký University Olomouc
VL - 35
IS - 1
SP - 149
EP - 158
LA - eng
KW - boundary value problem; functional-differential equations; existence; Leray-Schauder degree
UR - http://eudml.org/doc/23621
ER -

References

top
  1. Deimling K., Nonlinear Functional Analysis, Springer, Berlin-Heidelberg, 1985. (1985) Zbl0559.47040MR0787404
  2. Gupta C. P., Solvability of a three-point boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. 168 (1992), 540-551. (1992) MR1176010
  3. Gupta C. P., A note on a second order three-point boundary value problem, J. Math. Anal. Appl. 186 (1994), 277-281. (1994) Zbl0805.34017MR1290657
  4. Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge Univ. Press, London-New York, 1967. (1967) 
  5. Haščák A., Disconjugacy and multipoint boundary value problems for linear differential equations with delay, Czech. Math. J. 114, 39 (1989), 70-77. (1989) Zbl0689.34058MR0983484
  6. Haščák A., Tests for disconjugacy and strict disconjugacy of linear differential equations with delays, Czech. Math. J. 114, 39 (1989), 225-231. (1989) Zbl0703.34072MR0992129
  7. Haščák A., On the relationship between the initial and the multipoint boundary value problems for n-th order linear differential equations with delay, Arch. Math. (Brno), 26, 4 (1990), 207-214. (1990) MR1188972
  8. Marano S. A., A remark on a second-order three-point boundary value problem, J. Math. Anal. Appl. 183 (1994), 518-522. (1994) Zbl0801.34025MR1274852
  9. Mawhin J., Topological Degree Methods in Nonlinear Boundary Value Problems, In: NSF-CBMS Regional Conference Series in Math., No. 40, Amer. Math. Soc., Providence, RI, 1979. (1979) Zbl0414.34025MR0525202
  10. Ricceri O. N., Ricceri B., [unknown], Appl. Anal. 38 (1990), 259-270. (1990) MR1116184
  11. Staněk S., On some boundary value problems for second order functional differential equations, Nonlin. Anal. (in press). Zbl0873.34053
  12. Staněk S., Leray-Schauder degree method in one-parameter functional boundary value problem, Ann. Math. Silesianae, Katowice (in press). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.