A weakly associative generalization of the variety of representable lattice ordered groups

Jiří Rachůnek

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1998)

  • Volume: 37, Issue: 1, page 107-112
  • ISSN: 0231-9721

How to cite

top

Rachůnek, Jiří. "A weakly associative generalization of the variety of representable lattice ordered groups." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 37.1 (1998): 107-112. <http://eudml.org/doc/23656>.

@article{Rachůnek1998,
author = {Rachůnek, Jiří},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {circular totally semi-ordered groups; representable lattice ordered group; almost o-groups; subdirect sums; weakly associative lattice groups},
language = {eng},
number = {1},
pages = {107-112},
publisher = {Palacký University Olomouc},
title = {A weakly associative generalization of the variety of representable lattice ordered groups},
url = {http://eudml.org/doc/23656},
volume = {37},
year = {1998},
}

TY - JOUR
AU - Rachůnek, Jiří
TI - A weakly associative generalization of the variety of representable lattice ordered groups
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 1998
PB - Palacký University Olomouc
VL - 37
IS - 1
SP - 107
EP - 112
LA - eng
KW - circular totally semi-ordered groups; representable lattice ordered group; almost o-groups; subdirect sums; weakly associative lattice groups
UR - http://eudml.org/doc/23656
ER -

References

top
  1. Anderson F., Feil T., Lattice-Ordered Groups (An introduction), Reidel, Dordrecht-Boston-Lancaster-Tokyo, 1988. (1988) Zbl0636.06008MR0937703
  2. Droste M., k-homogenous relations and tournaments, Quart. J. Math. Oxford 40, 2 (1989), 1-11. (1989) MR0985534
  3. Fried E., Tournaments and non-associative lattices, Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151-164. (1970) MR0321837
  4. Fried E., A generalization of ordered algebraic systems, Acta Sci. Math. (Szeged) 31 (1970), 233-244. (1970) Zbl0226.06005MR0272694
  5. Glass A. M. W., Holland Charles W., Lattice-Ordered Groups (Advances and Techniques), Kluwer Acad. Publ., Dordrecht-Boston-London, 1989. (1989) MR1036072
  6. Kopytov V. M., Medvedev N. Ya., The Theory of Lattice Ordered Groups, Kluwer Acad. Publ., Dordrecht, 1994. (1994) Zbl0834.06015MR1369091
  7. Rachůnek J., Semi-ordered groups, Acta Univ. Palacki. Olomuc., Fac. rer. nat.61 (1979), 5-20. (1979) MR0589842
  8. Rachůnek J., Solid subgroups of weakly associative lattice groups, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 105, Math. 31 (1992), 13-24. (1992) MR1212601
  9. Rachůnek J., Circular totally semi-ordered groups, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 114, Math. 33 (1994), 109-116. (1994) MR1385751
  10. Rachůnek J., The semigroup of varieties of weakly associative lattice groups, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 34 (1995), 151-154. (1995) MR1447263
  11. Rachůnek J., On some varieties of weakly associative lattice groups, Czechoslovak Math. J. 46 (1996), 231-240. (1996) MR1388612
  12. Skala H., Trellis theory, Alg. Univ. 1 (1971), 218-233. (1971) Zbl0242.06003MR0302523
  13. Skala H., Trellis Theory, Memoirs Amer. Math. Soc., Providence, 1972. (1972) Zbl0242.06004MR0325474

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.