A weakly associative generalization of the variety of representable lattice ordered groups

Jiří Rachůnek

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1998)

  • Volume: 37, Issue: 1, page 107-112
  • ISSN: 0231-9721

How to cite

top

Rachůnek, Jiří. "A weakly associative generalization of the variety of representable lattice ordered groups." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 37.1 (1998): 107-112. <http://eudml.org/doc/23656>.

@article{Rachůnek1998,
author = {Rachůnek, Jiří},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {circular totally semi-ordered groups; representable lattice ordered group; almost o-groups; subdirect sums; weakly associative lattice groups},
language = {eng},
number = {1},
pages = {107-112},
publisher = {Palacký University Olomouc},
title = {A weakly associative generalization of the variety of representable lattice ordered groups},
url = {http://eudml.org/doc/23656},
volume = {37},
year = {1998},
}

TY - JOUR
AU - Rachůnek, Jiří
TI - A weakly associative generalization of the variety of representable lattice ordered groups
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 1998
PB - Palacký University Olomouc
VL - 37
IS - 1
SP - 107
EP - 112
LA - eng
KW - circular totally semi-ordered groups; representable lattice ordered group; almost o-groups; subdirect sums; weakly associative lattice groups
UR - http://eudml.org/doc/23656
ER -

References

top
  1. Anderson F., Feil T., Lattice-Ordered Groups (An introduction), Reidel, Dordrecht-Boston-Lancaster-Tokyo, 1988. (1988) Zbl0636.06008MR0937703
  2. Droste M., k-homogenous relations and tournaments, Quart. J. Math. Oxford 40, 2 (1989), 1-11. (1989) MR0985534
  3. Fried E., Tournaments and non-associative lattices, Ann. Univ. Sci. Budapest, Sect. Math. 13 (1970), 151-164. (1970) MR0321837
  4. Fried E., A generalization of ordered algebraic systems, Acta Sci. Math. (Szeged) 31 (1970), 233-244. (1970) Zbl0226.06005MR0272694
  5. Glass A. M. W., Holland Charles W., Lattice-Ordered Groups (Advances and Techniques), Kluwer Acad. Publ., Dordrecht-Boston-London, 1989. (1989) MR1036072
  6. Kopytov V. M., Medvedev N. Ya., The Theory of Lattice Ordered Groups, Kluwer Acad. Publ., Dordrecht, 1994. (1994) Zbl0834.06015MR1369091
  7. Rachůnek J., Semi-ordered groups, Acta Univ. Palacki. Olomuc., Fac. rer. nat.61 (1979), 5-20. (1979) MR0589842
  8. Rachůnek J., Solid subgroups of weakly associative lattice groups, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 105, Math. 31 (1992), 13-24. (1992) MR1212601
  9. Rachůnek J., Circular totally semi-ordered groups, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 114, Math. 33 (1994), 109-116. (1994) MR1385751
  10. Rachůnek J., The semigroup of varieties of weakly associative lattice groups, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 34 (1995), 151-154. (1995) MR1447263
  11. Rachůnek J., On some varieties of weakly associative lattice groups, Czechoslovak Math. J. 46 (1996), 231-240. (1996) MR1388612
  12. Skala H., Trellis theory, Alg. Univ. 1 (1971), 218-233. (1971) Zbl0242.06003MR0302523
  13. Skala H., Trellis Theory, Memoirs Amer. Math. Soc., Providence, 1972. (1972) Zbl0242.06004MR0325474

NotesEmbed ?

top

You must be logged in to post comments.