A note on the example of J. Andres concerning the application of the Nielsen fixed-point theory to differential systems

Ivo Gamba

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2001)

  • Volume: 40, Issue: 1, page 55-62
  • ISSN: 0231-9721

How to cite

top

Gamba, Ivo. "A note on the example of J. Andres concerning the application of the Nielsen fixed-point theory to differential systems." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 40.1 (2001): 55-62. <http://eudml.org/doc/23719>.

@article{Gamba2001,
author = {Gamba, Ivo},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Nielsen number; existence of two bounded solutions; nontrivial example},
language = {eng},
number = {1},
pages = {55-62},
publisher = {Palacký University Olomouc},
title = {A note on the example of J. Andres concerning the application of the Nielsen fixed-point theory to differential systems},
url = {http://eudml.org/doc/23719},
volume = {40},
year = {2001},
}

TY - JOUR
AU - Gamba, Ivo
TI - A note on the example of J. Andres concerning the application of the Nielsen fixed-point theory to differential systems
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2001
PB - Palacký University Olomouc
VL - 40
IS - 1
SP - 55
EP - 62
LA - eng
KW - Nielsen number; existence of two bounded solutions; nontrivial example
UR - http://eudml.org/doc/23719
ER -

References

top
  1. Andres J., A nontrivial example of application of the Nielsen fixed-point theory to differential systems: problem of Jean Leray, Proceed. Amer. Math. Soc. 128, 10 (2000), 2921-2931. Zbl0964.34030MR1664285
  2. Andres J., Multiple bounded solutions of differential inclusions: the Nielsen theory approach, J. Diff. Eqs. 155 (1999), 285-320. (1999) Zbl0940.34008MR1698556
  3. Andres J., Górniewicz L., From the Schauder fixed-point theorem to the applied multivalued Nielsen Theory, Topol. Meth. Nonlin. Anal. 14, 2 (1999), 228-238. (1999) Zbl0958.34015MR1766189
  4. Andres J., Górniewicz L., Jezierski J., A generalized Nielsen number and multiplicity results for differential inclusion, Topol. Appl. 100 (2000), 143-209. MR1733044
  5. Borsuk K., Theory of Retracts, PWN, Warsaw, 1967. (1967) Zbl0153.52905MR0216473
  6. Brown R. F., On the Nielsen fixed point theorem for compact maps, Duke. Math. J., 1968, 699-708. (1968) MR0250290
  7. Brown R. F., Topological identification of multiple solutions to parametrized nonlinear equations, Pacific J. Math. 131 (1988), 51-69. (1988) Zbl0615.47042MR0917865
  8. Brown R. F., Nielsen fixed point theory and parametrized differential equations, In: Contemp. Math. 72, AMS, Providence, RI, 1989, 33-46. (1989) MR0956478
  9. Cecchi M., Furi M., Marini M., About the solvability of ordinary differential equations with assymptotic boundary conditions, Boll. U. M. I., Ser. IV, 4-C, 1 (1985), 329-345. (1985) MR0805224
  10. Fečkan M., Multiple solution of nonlinear equations via Nielsen fixed-point theory: a survey, In: Nonlinear Anal. in Geometry and Topology (Th. M. Rassias, ed.), Hadronic Press, Inc., Fl., (2000), 77-97. MR1766782
  11. Granas A., The Leray-Schauder index and the fixed point theory for arbitrary ANRs, Bull. Soc. Math. France 100 (1972), 209-228. (1972) Zbl0236.55004MR0309102
  12. Krasnosel’skij M. A., The Operator of Translation along Trajectories of Differential Equations, Nauka, Moscow, 1966 (in Russian). (1966) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.