Reflexive relations and Mal'tsev conditions for congruence lattice identities in modular varieties
Gábor Czédli; Eszter K. Horváth
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2002)
- Volume: 41, Issue: 1, page 43-53
- ISSN: 0231-9721
Access Full Article
topHow to cite
topReferences
top- Czédli G., Freese R., On congruence distributivity and modularity, Algebra Universalis 17 (1983), 216-219. (1983) Zbl0548.08003MR0726275
- Czédli G., Horváth E. K., Congruence distributivity and modularity permit tolerances, Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math., to appear. Zbl1043.08002MR1967338
- Czédli G., Horváth E. K., All congruence lattice identities implying modularity have Mal’tsev conditions, Algebra Universalis, to appear. Zbl1091.08007
- Day A., A characterization of modularity for congruence lattices of algebras, Canad. Math. Bull. 12 (1969), 167-173. (1969) MR0248063
- Day A., p-modularity implies modularity in equational classes, Algebra Universalis 3 (1973), 398-399. (1973) Zbl0288.06012MR0354497
- Day A., Freese R., A characterization of identities implying congruence modularity, I. Canad. J. Math. 32 (1980), 1140-1167. (1980) Zbl0414.08003MR0596102
- Freese R., McKenzie R., Commutator theory for congruence modular varieties, London Mathematical Society Lecture Note Series, 125, Cambridge University Press, Cambridge, 1987. iv+227. (1987) Zbl0636.08001MR0909290
- Freese R., Nation J. B., 3,3 Lattice inclusions imply congruence modularity, Algebra Universalis 7 (1977), 191-194. (1977) Zbl0384.08006MR0434906
- Gedeonová E., A characterization of p-modularity for congruence lattices of algebras, Acta Fac. Rerum Natur. Univ. Comenian. Math. Publ. 28 (1972), 99-106. (1972) Zbl0264.06008MR0313169
- Grätzer G., Two Mal’cev-type theorems in universal algebra, J. Combinatorial Theory 8 (1970), 334-342. (1970)
- Gumm H. P., Geometrical methods in congruence modular algebras, Mem. Amer. Math. Soc. 45, 286 (1983), viii+79. (1983) Zbl0547.08006MR0714648
- Herrmann C., Huhn A. P., Zum Begriff der Charakteristik modularer Verbände, Math. Z. 144 (1975), 185-194. (1975) Zbl0316.06006MR0384630
- Herrmann C., Huhn A. P., Lattices of normal subgroups which are generated by frames, In: Lattice Theory, Proc. Conf. Szeged 1974, Coll. Math. Soc. J. Bolyai 12, North-Holland, Amsterdam 1976, 97-136. (1974) MR0447064
- Huhn A. P., Schwach distributive Verbände, I. Acta Sci. Math. (Szeged) 33 (1.972), 297-305 (in German). Zbl0536.08002MR0337710
- Huhn A. P., On Gratzer's problem concerning automorphisms of a finitely presented lattice, Algebra Universalis 5 (1975), 65-71. (1975) MR0392713
- Hutchinson G., Czédli G., A test for identities satisfied in lattices of submodules, Algebra Universalis 8 (1978), 269-309. (1978) MR0469840
- Jónsson B., Algebras whose congruence lattices are distributive, Math. Scandinavica 21 (1967), 110-121. (1967) MR0237402
- Jónsson B., Congruence varieties, Algebra Universalis 10 (1980), 355-394. (1980) MR0564122
- McKenzie R., Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1-43. (1972) MR0313141
- Mederly P., Three Mal’cev type theorems and their application, Mat. časopis SAV 25 (1975), 83-95. (1975) Zbl0302.08003MR0384650
- Nation J. B., Varieties whose congruences satisfy certain lattice identities, Algebra Universalis 4 (1974), 78-88. (1974) Zbl0299.08002MR0354501
- Neumann W. D., On Malcev conditions, J. Austral. Math. Soc. 17 (1974), 376-384. (1974) Zbl0294.08004MR0371781
- Pálfy P. P., Szabó, Cs., An identity for subgroup lattices of abelian groups, Algebra Universalis 33 (1995), 191-195. (1995) Zbl0820.06003MR1318983
- Pixley A. F., Local Malcev conditions, Canad. Math. Bull. 15 (1972), 559-568. (1972) Zbl0254.08009MR0309837
- Snow J. W., Mal’tsev conditions and relations on algebras, Algebra Universalis 42 (1999), 299-309. (1999) Zbl0979.08004MR1759488
- Taylor W., Characterizing Mal’cev conditions, Algebra Universalis 3 (1973), 351-397. (1973) Zbl0304.08003MR0349537
- Wille R., Kongruenzklassengeometrien, Lecture Notes in Mathematics 113, Springer-Verlag, Berlin-New York, 1970, iii+99 (in German). (1970) Zbl0191.51403MR0262149