On the Hilbert-Ackermann theorem in fuzzy logic

Vilém Novák

Acta Mathematica et Informatica Universitatis Ostraviensis (1996)

  • Volume: 04, Issue: 1, page 57-74
  • ISSN: 1804-1388

How to cite

top

Novák, Vilém. "On the Hilbert-Ackermann theorem in fuzzy logic." Acta Mathematica et Informatica Universitatis Ostraviensis 04.1 (1996): 57-74. <http://eudml.org/doc/23784>.

@article{Novák1996,
author = {Novák, Vilém},
journal = {Acta Mathematica et Informatica Universitatis Ostraviensis},
keywords = {fuzzy logic; open fuzzy theory; consistency},
language = {eng},
number = {1},
pages = {57-74},
publisher = {University of Ostrava},
title = {On the Hilbert-Ackermann theorem in fuzzy logic},
url = {http://eudml.org/doc/23784},
volume = {04},
year = {1996},
}

TY - JOUR
AU - Novák, Vilém
TI - On the Hilbert-Ackermann theorem in fuzzy logic
JO - Acta Mathematica et Informatica Universitatis Ostraviensis
PY - 1996
PB - University of Ostrava
VL - 04
IS - 1
SP - 57
EP - 74
LA - eng
KW - fuzzy logic; open fuzzy theory; consistency
UR - http://eudml.org/doc/23784
ER -

References

top
  1. Chang C. C., H. J. Keisler, Model Theory, North-Holland, Amsterdam 1973. (1973) Zbl0276.02032
  2. Goguen J. A., 10.1007/BF00485654, Synthese 19 (1968-69), 325-373. (1968) DOI10.1007/BF00485654
  3. Gottwald S., Mehrwertige Logik, Akademie-Verlag, Berlin 1989. (1989) Zbl0714.03022MR1117450
  4. Hajek P., 10.1016/0165-0114(94)00299-M, Fuzzy Sets and Systems 73 (1995), 359-363. (1995) Zbl0857.03011MR1347824DOI10.1016/0165-0114(94)00299-M
  5. Lehmke S., On Resolution-Based Theorem Proving in Propositional Fuzzy Logic with 'Bold' Connectives, Diploma thesis. University of Dortmund, Dortmund 1995. (1995) 
  6. Novák V., Fuzzy Sets and Their Applications, Adam-Hilger, Bristol, 1989. (1989) MR1019090
  7. Novák V., On the Syntactico-Semantical Completeness of First-Order Fuzzy Logic. Part I - Syntactical Aspects, Kybernetika 26 (1990), 47-66. (1990) MR1042231
  8. Novák V., On the Syntactico-Semantical Completeness of First-Order Fuzzy Logic. Part II - Main Results, Kybernetika 26 (1990), 134-154. (1990) MR1059796
  9. Novák V., The Alternative Mathematical Model of Linguistic Semantics and Pragmatics, Plenum, New York, 1992. (1992) MR1213455
  10. Novák V., On the logical basis of approximate reasoning, in V. Novák, J. Ramík, M. Mareš, M. Černý and J. Nekola, Eds.: Fuzzy Approach to Reasoning and Decision Making. Academia, Prague and Kluwer, Dordrecht 1992. (1992) MR1219743
  11. Novák V., Fuzzy Logic As a Basis of Approximate Reasoning, In: Zadeh, L. A., Kacprzyk, J. Fuzzy Logic for the Management of Uncertainty. J. Wiley & Sons, New York 1992. (1992) 
  12. Novák V., Towards Formalized Integrated Theory of Fuzzy Logic, In: Bien Z., and K. Min (eds.), Fuzzy Logic and Its Applications to Engineering, Information Sciences, and Intelligent Systems, Kluwer, Dordrecht 1995, 353-363. (1995) MR1426861
  13. Novák V., Ultraproduct Theorem and Recursive properties of Fuzzy Logic, In: Hohle U. and E. P. Klement (eds.), Non-Classical Logics and Their Applications to Fuzzy Subsets. A Handbook of the Mathematical Foundations of Fuzzy Set Theory, Kluwer, Dordrecht 1995, 341-370. (1995) MR1345649
  14. Novák V., Fuzzy Logic Revisited, Proc. Int. Conference EUFIT'94, Verlag der Augustinus Buchhandlung, Aachen 1994, 496-499. (1994) 
  15. Novák V., A New Proof of Completeness of Fuzzy Logic and Some Conclusions for Approximate Reasoning, Proc. Int. Conference FUZZ-IEEE/IFES'95, Yokohama 1995, 1461-1468. (1995) 
  16. Novák V., 10.1080/03081079608945129, Int. J. of General Systems 24 (1996), 377 405. (1996) DOI10.1080/03081079608945129
  17. Pavelka J., 10.1002/malq.19790250304, Zeit. Math. Logic. Grundl. Math. 25 (1979), 45-52; 119-134; 447-464. (1979) MR0524558DOI10.1002/malq.19790250304
  18. Rasiowa H., R. Sikorski, The Mathematics of Metamathematics, PWN, Warszawa 1963. (1963) Zbl0122.24311MR0163850
  19. Rose A., J. B. Rosser, 10.1090/S0002-9947-1958-0094299-1, Trans. A.M.S. 87 (1958), 1-53. (1958) Zbl0085.24303MR0094299DOI10.1090/S0002-9947-1958-0094299-1
  20. Schwartz D. G., 10.1016/0165-0114(87)90133-3, Fuzzy Sets and Systems 21 (1987), 319-349. (1987) Zbl0626.03015MR0879663DOI10.1016/0165-0114(87)90133-3
  21. Shoenfield J. R., Mathematical Logic, Addison-Wesley, New York 1967. (1967) Zbl0155.01102MR0225631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.