Fermat and Wilson quotients for p -adic integers

Ladislav Skula

Acta Mathematica et Informatica Universitatis Ostraviensis (1998)

  • Volume: 06, Issue: 1, page 167-181
  • ISSN: 1804-1388

How to cite

top

Skula, Ladislav. "Fermat and Wilson quotients for $p$-adic integers." Acta Mathematica et Informatica Universitatis Ostraviensis 06.1 (1998): 167-181. <http://eudml.org/doc/23810>.

@article{Skula1998,
author = {Skula, Ladislav},
journal = {Acta Mathematica et Informatica Universitatis Ostraviensis},
keywords = {Fermat quotient; Euler quotient; Wilson quotient; -adic number},
language = {eng},
number = {1},
pages = {167-181},
publisher = {University of Ostrava},
title = {Fermat and Wilson quotients for $p$-adic integers},
url = {http://eudml.org/doc/23810},
volume = {06},
year = {1998},
}

TY - JOUR
AU - Skula, Ladislav
TI - Fermat and Wilson quotients for $p$-adic integers
JO - Acta Mathematica et Informatica Universitatis Ostraviensis
PY - 1998
PB - University of Ostrava
VL - 06
IS - 1
SP - 167
EP - 181
LA - eng
KW - Fermat quotient; Euler quotient; Wilson quotient; -adic number
UR - http://eudml.org/doc/23810
ER -

References

top
  1. T. Agoh K. Dilcher, and L. Skula, 10.1006/jnth.1997.2162, J. Number Theory 66 (1997), 29-50. (1997) MR1467188DOI10.1006/jnth.1997.2162
  2. T. Agoh K. Dilcher, and L. Skula, 10.1090/S0025-5718-98-00951-X, Math. Comp. 67, No. 222 (1998), 843-861. (1998) MR1464140DOI10.1090/S0025-5718-98-00951-X
  3. Z. I. Borevich I. R. Shafarevich, Number Theory, Academic Press, Orlando, 1966. (1966) MR0195803
  4. G. Eisenstein, Eine neue Gattung zahlentheoretischer Funktionen, welche von zwei Elementen abhängen und durch gewisse lineare Funktional-Gleichungen definiert werden, Bericht über die zur Bekanntmachung geeigenten Verhandlungen der Königl. Preuss. Akademie der Wissenschaften zu Berlin (1850), 36-42 (p.41). "Math. Werke, Gotthold Eisenstein", Band II, Chelsea, New York, 2nd ed. 1989, 705-711 (p. 7-10). (1989) 
  5. A. Friedmann J. Tamarkine, Quelques formules concernant la théorie de la fonction [x] et des nombres de Bernoulli, J. Reine Angew. Math. 135 (1909), 146-156. (1909) 
  6. H. Koch, Galoissche Theorie der p-Erweiterungen, , Berlin 1970. (1970) Zbl0216.04704MR0291139
  7. H.-W. Leopoldt, 10.1007/BF02992777, Abh. Math. Sem, Univ. Hamburg 25 (1961), 77-81. (1961) Zbl0099.02603MR0125838DOI10.1007/BF02992777
  8. M. Lerch, 10.1007/BF01561092, Math. Ann. 60 (1905), 471-490. (1905) MR1511321DOI10.1007/BF01561092
  9. M. Lerch, Sur les théorèmes de Sylvester concernant le quotient de Fermat, C. R. Acad. Sci. Paris 142 (1906), 35-38. (1906) 
  10. L. C. Washington, Introduction to Cyclotomic Fields, Second Edition, Springer, 1997. (1997) Zbl0966.11047MR1421575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.