Non-negative curvature obstructions in cohomogeneity one and the Kervaire spheres
Karsten Grove; Luigi Verdiani; Burkhard Wilking; Wolfgang Ziller
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)
- Volume: 5, Issue: 2, page 159-170
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topGrove, Karsten, et al. "Non-negative curvature obstructions in cohomogeneity one and the Kervaire spheres." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.2 (2006): 159-170. <http://eudml.org/doc/239592>.
@article{Grove2006,
abstract = {In contrast to the homogeneous case, we show that there are compact cohomogeneity one manifolds that do not support invariant metrics of non-negative sectional curvature. In fact we exhibit infinite families of such manifolds including the exotic Kervaire spheres. Such examples exist for any codimension of the singular orbits except for the case when both are equal to two, where existence of non-negatively curved metrics is known.},
author = {Grove, Karsten, Verdiani, Luigi, Wilking, Burkhard, Ziller, Wolfgang},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {159-170},
publisher = {Scuola Normale Superiore, Pisa},
title = {Non-negative curvature obstructions in cohomogeneity one and the Kervaire spheres},
url = {http://eudml.org/doc/239592},
volume = {5},
year = {2006},
}
TY - JOUR
AU - Grove, Karsten
AU - Verdiani, Luigi
AU - Wilking, Burkhard
AU - Ziller, Wolfgang
TI - Non-negative curvature obstructions in cohomogeneity one and the Kervaire spheres
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 2
SP - 159
EP - 170
AB - In contrast to the homogeneous case, we show that there are compact cohomogeneity one manifolds that do not support invariant metrics of non-negative sectional curvature. In fact we exhibit infinite families of such manifolds including the exotic Kervaire spheres. Such examples exist for any codimension of the singular orbits except for the case when both are equal to two, where existence of non-negatively curved metrics is known.
LA - eng
UR - http://eudml.org/doc/239592
ER -
References
top- [AA] A. V. Alekseevski and D. V. Alekseevski, -manifolds with one dimensional orbit space, Adv. in Sov. Math. 8 (1992), 1–31. Zbl0769.57021MR1155662
- [Be] A. Besse, “Einstein Manifolds”, Erg. der Math. und ihr. Grenz. Vol. 10, Springer Verlag, Berlin, 1987. Zbl0613.53001MR867684
- [BH] A. Back and W. Y. Hsiang, Equivariant geometry and Kervaire spheres, Trans. Amer. Math. Soc. 304 (1987), 207–227. Zbl0632.53048MR906813
- [Br] G. E. Bredon, “Introduction to Compact Transformation Groups”, Pure and Applied Mathematics (46), Academic Press, New York, 1972. Zbl0246.57017MR413144
- [GZ1] K. Grove and W. Ziller, Curvature and symmetry of Milnor spheres, Ann. of Math. 152 (2000), 331–367. Zbl0991.53016MR1792298
- [GZ2] K. Grove and W. Ziller, Cohomogeneity one manifolds with positive Ricci curvature, Invent. Math. 149 (2002), 619–646. Zbl1038.53034MR1923478
- [HH] W. C. Hsiang and W. Y. Hsiang, On compact subgroups of the diffeomorphism groups of Kervaire spheres, Ann. of Math. 85 (1967), 359–369. Zbl0152.40604MR214083
- [Se] C. Searle, Cohomogeneity and positive curvature in low dimensions, Math. Z. 214 (1993), 491–498: Err. ibet. 226 (1997), 165–167. Zbl0804.53057MR1245208
- [ST] L. Schwachöfer and W. Tuschmann, Metrics of positive Ricci curvature on quotient spaces, Math. Ann. 330 (2004), 59–91. Zbl1062.53027MR2091679
- [Wa] N. Wallach, Minimal immersions of symmetric spaces into spheres, In: “Symmetric Spaces”, Pure and Appl. Math., Vol. 8 , Marcel Dekker, New York, 1972, 1–40. Zbl0232.53027MR407774
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.