Bounds for double zeta-functions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)
- Volume: 5, Issue: 4, page 445-464
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topKiuchi, Isao, and Tanigawa, Yoshio. "Bounds for double zeta-functions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.4 (2006): 445-464. <http://eudml.org/doc/239607>.
@article{Kiuchi2006,
abstract = {In this paper we shall derive the order of magnitude for the double zeta-functionof Euler-Zagier type in the region $0 \le \Re s_j <1 \ \ (j=1,2)$.First we prepare the Euler-Maclaurinsummation formula in a suitable form for our purpose, and then we apply the theory of doubleexponential sums of van der Corput’s type.},
author = {Kiuchi, Isao, Tanigawa, Yoshio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {445-464},
publisher = {Scuola Normale Superiore, Pisa},
title = {Bounds for double zeta-functions},
url = {http://eudml.org/doc/239607},
volume = {5},
year = {2006},
}
TY - JOUR
AU - Kiuchi, Isao
AU - Tanigawa, Yoshio
TI - Bounds for double zeta-functions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 4
SP - 445
EP - 464
AB - In this paper we shall derive the order of magnitude for the double zeta-functionof Euler-Zagier type in the region $0 \le \Re s_j <1 \ \ (j=1,2)$.First we prepare the Euler-Maclaurinsummation formula in a suitable form for our purpose, and then we apply the theory of doubleexponential sums of van der Corput’s type.
LA - eng
UR - http://eudml.org/doc/239607
ER -
References
top- [1] S. Akiyama, S. Egami and Y. Tanigawa, An analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith. 98 (2001), 107–116. Zbl0972.11085MR1831604
- [2] S. Akiyama and Y. Tanigawa, Multiple zeta values at non-positive integers, Ramanujan J. 5 (2001), 327–351. Zbl1002.11069MR1891413
- [3] F. V. Atkinson, The mean-value of the Riemann zeta-function, Acta Math. 81 (1949), 353–376. Zbl0036.18603MR31963
- [4] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, “Higher Transcendental Functions I”, McGraw-Hill, New-York, 1953. Zbl0052.29502
- [5] I. S. Gradshteyn and I. M. Ryzhik, “Tables of Integrals, Series and Products”, Academic Press, Inc., 1979. Zbl0918.65002
- [6] S. W. Graham and G. Kolesnik, “Van der Corput’s methods of exponential sums”, London Math. Society, LNS Vol. 126, Cambridge University Press 1991. Zbl0713.11001MR1145488
- [7] J. L. H. Hafner, New omega results in a weighted divisor problem, J. Number Theory 28 (1988), 240–257. Zbl0635.10037MR932373
- [8] M. N. Huxley, “Area, Lattice Points and Exponential Sums”, Oxford Science Publications, Clarendon Press, Oxford, 1996. Zbl0861.11002MR1420620
- [9] M. N. Huxley, Integer points, exponential sums and the Riemann zeta function, In: “Number Theory for the Millennium, Proc. Millennial Conf. Number Theory", Vol. II, M. A. Bennett et al. (eds.), A K Peters 2002, 275–290. Zbl1030.11053MR1956254
- [10] H. Ishikawa and K. Matsumoto, On the estimation of the order of Euler-Zagier multiple zeta-functions, Illinois J. Math. 47 (2003), 1151–1166. Zbl1094.11033MR2036995
- [11] A. Ivić, “The Riemann Zeta-Function”, John Wiley & Sons, 1985. Zbl0556.10026MR792089
- [12] E. Krätzel, “Lattice Points”, Kluwer Academic Publishers, 1988. Zbl0675.10031MR998378
- [13] K. Matsumoto, On the analytic continuation of various multiple zeta-functions, In: “Number Theory for the Millennium, Proc. Millennial Conf. Number Theory”, Vol. II, M. A. Bennett et al. (eds.), A K Peters 2002, 417–440. Zbl1031.11051MR1956262
- [14] Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory 74 (1999), 39–43. Zbl0920.11063MR1670544
- [15] E. C. Titchmarsh, On Epstein’s zeta-function, Proc. London Math. Soc. (2) 36 (1934), 485–500. Zbl0008.30101
- [16] E. C. Titchmarsh, “The Theory of the Riemann Zeta-Function” (Revised by D. R. Heath-Brown), Clarendon press Oxford, 1986. Zbl0601.10026MR882550
- [17] J. Q. Zhao, Analytic continuation of multiple zeta function, Proc. Amer. Math. Soc. 128 (2000), 1275–1283. Zbl0949.11042MR1670846
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.