Bounds for double zeta-functions

Isao Kiuchi; Yoshio Tanigawa

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)

  • Volume: 5, Issue: 4, page 445-464
  • ISSN: 0391-173X

Abstract

top
In this paper we shall derive the order of magnitude for the double zeta-functionof Euler-Zagier type in the region 0 s j < 1 ( j = 1 , 2 ) .First we prepare the Euler-Maclaurinsummation formula in a suitable form for our purpose, and then we apply the theory of doubleexponential sums of van der Corput’s type.

How to cite

top

Kiuchi, Isao, and Tanigawa, Yoshio. "Bounds for double zeta-functions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.4 (2006): 445-464. <http://eudml.org/doc/239607>.

@article{Kiuchi2006,
abstract = {In this paper we shall derive the order of magnitude for the double zeta-functionof Euler-Zagier type in the region $0 \le \Re s_j &lt;1 \ \ (j=1,2)$.First we prepare the Euler-Maclaurinsummation formula in a suitable form for our purpose, and then we apply the theory of doubleexponential sums of van der Corput’s type.},
author = {Kiuchi, Isao, Tanigawa, Yoshio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {445-464},
publisher = {Scuola Normale Superiore, Pisa},
title = {Bounds for double zeta-functions},
url = {http://eudml.org/doc/239607},
volume = {5},
year = {2006},
}

TY - JOUR
AU - Kiuchi, Isao
AU - Tanigawa, Yoshio
TI - Bounds for double zeta-functions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 4
SP - 445
EP - 464
AB - In this paper we shall derive the order of magnitude for the double zeta-functionof Euler-Zagier type in the region $0 \le \Re s_j &lt;1 \ \ (j=1,2)$.First we prepare the Euler-Maclaurinsummation formula in a suitable form for our purpose, and then we apply the theory of doubleexponential sums of van der Corput’s type.
LA - eng
UR - http://eudml.org/doc/239607
ER -

References

top
  1. [1] S. Akiyama, S. Egami and Y. Tanigawa, An analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith. 98 (2001), 107–116. Zbl0972.11085MR1831604
  2. [2] S. Akiyama and Y. Tanigawa, Multiple zeta values at non-positive integers, Ramanujan J. 5 (2001), 327–351. Zbl1002.11069MR1891413
  3. [3] F. V. Atkinson, The mean-value of the Riemann zeta-function, Acta Math. 81 (1949), 353–376. Zbl0036.18603MR31963
  4. [4] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, “Higher Transcendental Functions I”, McGraw-Hill, New-York, 1953. Zbl0052.29502
  5. [5] I. S. Gradshteyn and I. M. Ryzhik, “Tables of Integrals, Series and Products”, Academic Press, Inc., 1979. Zbl0918.65002
  6. [6] S. W. Graham and G. Kolesnik, “Van der Corput’s methods of exponential sums”, London Math. Society, LNS Vol. 126, Cambridge University Press 1991. Zbl0713.11001MR1145488
  7. [7] J. L. H. Hafner, New omega results in a weighted divisor problem, J. Number Theory 28 (1988), 240–257. Zbl0635.10037MR932373
  8. [8] M. N. Huxley, “Area, Lattice Points and Exponential Sums”, Oxford Science Publications, Clarendon Press, Oxford, 1996. Zbl0861.11002MR1420620
  9. [9] M. N. Huxley, Integer points, exponential sums and the Riemann zeta function, In: “Number Theory for the Millennium, Proc. Millennial Conf. Number Theory", Vol. II, M. A. Bennett et al. (eds.), A K Peters 2002, 275–290. Zbl1030.11053MR1956254
  10. [10] H. Ishikawa and K. Matsumoto, On the estimation of the order of Euler-Zagier multiple zeta-functions, Illinois J. Math. 47 (2003), 1151–1166. Zbl1094.11033MR2036995
  11. [11] A. Ivić, “The Riemann Zeta-Function”, John Wiley & Sons, 1985. Zbl0556.10026MR792089
  12. [12] E. Krätzel, “Lattice Points”, Kluwer Academic Publishers, 1988. Zbl0675.10031MR998378
  13. [13] K. Matsumoto, On the analytic continuation of various multiple zeta-functions, In: “Number Theory for the Millennium, Proc. Millennial Conf. Number Theory”, Vol. II, M. A. Bennett et al. (eds.), A K Peters 2002, 417–440. Zbl1031.11051MR1956262
  14. [14] Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory 74 (1999), 39–43. Zbl0920.11063MR1670544
  15. [15] E. C. Titchmarsh, On Epstein’s zeta-function, Proc. London Math. Soc. (2) 36 (1934), 485–500. Zbl0008.30101
  16. [16] E. C. Titchmarsh, “The Theory of the Riemann Zeta-Function” (Revised by D. R. Heath-Brown), Clarendon press Oxford, 1986. Zbl0601.10026MR882550
  17. [17] J. Q. Zhao, Analytic continuation of multiple zeta function, Proc. Amer. Math. Soc. 128 (2000), 1275–1283. Zbl0949.11042MR1670846

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.