Finite groups in which τ -quasinormality is a transitive relation

Vladimir O. Lukyanenko; Alexander N. Skiba

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 124, page 231-246
  • ISSN: 0041-8994

How to cite

top

Lukyanenko, Vladimir O., and Skiba, Alexander N.. "Finite groups in which $\tau $-quasinormality is a transitive relation." Rendiconti del Seminario Matematico della Università di Padova 124 (2010): 231-246. <http://eudml.org/doc/239759>.

@article{Lukyanenko2010,
author = {Lukyanenko, Vladimir O., Skiba, Alexander N.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {finite groups; quasinormal subgroups; TQT-groups; PST-groups; transitive quasinormality; Sylow permutability; semipermutable subgroups; supersoluble groups; Hall subgroups},
language = {eng},
pages = {231-246},
publisher = {Seminario Matematico of the University of Padua},
title = {Finite groups in which $\tau $-quasinormality is a transitive relation},
url = {http://eudml.org/doc/239759},
volume = {124},
year = {2010},
}

TY - JOUR
AU - Lukyanenko, Vladimir O.
AU - Skiba, Alexander N.
TI - Finite groups in which $\tau $-quasinormality is a transitive relation
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 124
SP - 231
EP - 246
LA - eng
KW - finite groups; quasinormal subgroups; TQT-groups; PST-groups; transitive quasinormality; Sylow permutability; semipermutable subgroups; supersoluble groups; Hall subgroups
UR - http://eudml.org/doc/239759
ER -

References

top
  1. [1] R. K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc. 47 (1) (1975), pp. 77--83. Zbl0299.20014MR364444
  2. [2] M. Asaad, On maximal subgroups of Sylow subgroups of finite groups, Comm. Algebra, 26 (1998), pp. 3647--3652. Zbl0915.20008MR1647102
  3. [3] M. Asaad, On the solvability of finite groups, Arch. Math., 51 (1988), pp. 289--293. Zbl0656.20031MR964952
  4. [4] M. Asaad - P. Csörgö, The influence of minimal subgroups on the structure of finite groups, Arch. Math., 72 (1999), pp. 401--404. Zbl0938.20013MR1687528
  5. [5] M. Asaad - M. Ramadan - A. Shaalan, Influence of π -quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group, Arch. Math., 56 (1991), pp. 521--527. Zbl0738.20026MR1106492
  6. [6] A. Ballester-Bolinches - R. Esteban-Romero, Sylow permutable subnormal subgroups of finite groups, J. Algebra, 251 (2002), pp. 727--738. Zbl1010.20013MR1917388
  7. [7] A. Ballester-Bolinches - R. Esteban-Romero, Sylow permutable subnormal subgroups of finite groups, II, Bull. Austral. Math. Soc., 64 (2001), pp. 479--486. Zbl0999.20012MR1878899
  8. [8] A. Ballester-Bolinches - L. M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006. Zbl1102.20016MR2241927
  9. [9] A. Ballester-Bolinches - M. C. Pedraza-Aguilera, On minimal subgroups of finite groups, Acta Math. Hungar., 73 (1996), pp. 335--342. Zbl0930.20021MR1428040
  10. [10] J. C. Beidleman - B. Brewster - D. J. S. Robinson, Criteria for permutability to be transitive in finite groups, J. Algebra, 222 (1999), pp. 400--412. Zbl0948.20015MR1733679
  11. [11] J. C. Beidleman - H. Heineken - M. F. Ragland, Solvable P S T -groups, strong Sylow bases and mutually permutable products, J. Algebra, 321 (7) (2009), pp. 2022--2027. Zbl1190.20015MR2494755
  12. [12] R. A. Bryce - J. Cossey, The Wielandt subgroup of a finite soluble group, J. London Math. Soc., 40 (1989), pp. 244--256. Zbl0734.20010MR1044272
  13. [13] J. Buckley, Finite groups whose minimal subgroups are normal, Math. Z., 15 (1970), pp. 15--17. Zbl0202.02303MR262359
  14. [14] K. Doerk, Minimal nicht uberauflosbare, endlicher Gruppen, Math. Z., 91 (1966), pp. 198--205. Zbl0135.05401MR191962
  15. [15] K. Doerk - T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin - New York, 1992. Zbl0753.20001MR1169099
  16. [16] T. M. Gagen, Topics in Finite Groups, Cambridge University Press, 1976. Zbl0324.20013MR407127
  17. [17] W. Gaschütz, Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957), pp. 87--92. Zbl0077.25003MR91277
  18. [18] D. Gorenstein, Finite Groups, Harper & Row Publishers, New York - Evanston - London, 1968. Zbl0185.05701MR231903
  19. [19] B. Huppert, Endliche Gruppen I, Springer, Berlin - Heidelberg - New York, 1967. Zbl0412.20002MR224703
  20. [20] B. Huppert, Normalteiler and maximale Untergruppen endlicher Gruppen, Math. Z., 60 (1954), pp. 409--434. Zbl0057.25303MR64771
  21. [21] B. Huppert - N. Blackburn, Finite Groups III, Springer - Verlag, Berlin - New York, 1982. Zbl0514.20002MR662826
  22. [22] O. H. Kegel, Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), pp. 205--221. Zbl0102.26802MR147527
  23. [23] Y. Li, On S -semipermutable and c -normal subgroups of finite groups, Arabian J. Sci. Engineering, 34(2A) (2009), pp. 167--175. 
  24. [24] Y. Li - L. Wang - Y. Wang, Finite groups in which ( S )-semipermutability is a transitive relation, Internat. J. Algebra, 2(3) (2008), pp. 143--152. Zbl1181.20024MR2417529
  25. [25] Y. Li - Y. Wang - H. Wei, The influence of π -quasinormality of some subgroups of a finite group, Arch. Math., 81 (2003), pp. 245--252. Zbl1053.20017MR2013253
  26. [26] Y. Li - Y. Wang, The influence of minimal subgroups on the structure of a finite group, Proc. Amer. Math. Soc., 131 (2002), pp. 337--341. Zbl1028.20015MR1933321
  27. [27] V. O. Lukyanenko - A. N. Skiba, On τ -quasinormal and weakly τ -quasinormal subgroups of finite groups, Math. Sci. Res. J., 12(10) (2008), pp. 243--257. Zbl1179.20018MR2493074
  28. [28] V. O. Lukyanenko - A. N. Skiba, On weakly τ -quasinormal subgroups of finite groups, Acta Math. Hungar., 125 (3) (2009), pp. 237--248. Zbl1207.20009MR2557033
  29. [29] M. Ramadan, Influence of normality on maximal subgroups of Sylow subgroups of a finite group, Acta Math. Hungar., 59 (1992), pp. 107--110. Zbl0802.20019MR1160206
  30. [30] D. J. S. Robinson, A note of finite groups in which normality is transitive, Proc. Amer. Math. Soc., 19 (1968), pp. 933--937. Zbl0159.31002MR230808
  31. [31] P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra, 182 (1998), pp. 285--293. Zbl0910.20015MR1643106
  32. [32] V. I. Sergienko, A criterion for the p -solubility of finite groups, Mat. Zam., 9 (1971), pp. 375--383 (Russian, English translation in Math. Notes, 9 (1971), pp. 216--220). Zbl0232.20023MR284506
  33. [33] A. Shaalan, The influence of S -permutability of some subgroups, Acta Math. Hungar., 56 (1990), pp. 287--293. Zbl0725.20018MR1111314
  34. [34] L. A. Shemetkov, Formations of Finite Groups, Nauka, Moscow, 1978. Zbl0496.20014MR519875
  35. [35] L. A. Shemetkov - A. N. Skiba, Formations of Algebraic Systems, Nauka, Moscow, 1989. Zbl0667.08001MR1007307
  36. [36] A. N. Skiba, A characterization of the hypercyclically embedded subgroups of finite groups, J. Pure Appl. Algebra, (2010), DOI: 10.1016/j.jpaa.2010.04.017. Zbl1206.20020
  37. [37] S. Srinivasan, Two sufficient conditions for supersolubility of finite groups, Israel J. Math., 3 (35) (1980), pp. 210--214. Zbl0437.20012MR576471
  38. [38] L. Wang - Y. Wang, On S -semipermutable maximal and minimal subgroups of Sylow p -subgroups of finite groups, Comm. Algebra, 34 (2006), pp. 143--149. Zbl1087.20015MR2194354
  39. [39] G. Zacher, I gruppi risolubili finiti in cui i sottogrupi di composizione coincidono con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 37 (8) (1964), pp. 150--154. Zbl0136.28302MR174633

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.