Finite groups in which -quasinormality is a transitive relation
Vladimir O. Lukyanenko; Alexander N. Skiba
Rendiconti del Seminario Matematico della Università di Padova (2010)
- Volume: 124, page 231-246
- ISSN: 0041-8994
Access Full Article
topHow to cite
topLukyanenko, Vladimir O., and Skiba, Alexander N.. "Finite groups in which $\tau $-quasinormality is a transitive relation." Rendiconti del Seminario Matematico della Università di Padova 124 (2010): 231-246. <http://eudml.org/doc/239759>.
@article{Lukyanenko2010,
author = {Lukyanenko, Vladimir O., Skiba, Alexander N.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {finite groups; quasinormal subgroups; TQT-groups; PST-groups; transitive quasinormality; Sylow permutability; semipermutable subgroups; supersoluble groups; Hall subgroups},
language = {eng},
pages = {231-246},
publisher = {Seminario Matematico of the University of Padua},
title = {Finite groups in which $\tau $-quasinormality is a transitive relation},
url = {http://eudml.org/doc/239759},
volume = {124},
year = {2010},
}
TY - JOUR
AU - Lukyanenko, Vladimir O.
AU - Skiba, Alexander N.
TI - Finite groups in which $\tau $-quasinormality is a transitive relation
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 124
SP - 231
EP - 246
LA - eng
KW - finite groups; quasinormal subgroups; TQT-groups; PST-groups; transitive quasinormality; Sylow permutability; semipermutable subgroups; supersoluble groups; Hall subgroups
UR - http://eudml.org/doc/239759
ER -
References
top- [1] R. K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc. 47 (1) (1975), pp. 77--83. Zbl0299.20014MR364444
- [2] M. Asaad, On maximal subgroups of Sylow subgroups of finite groups, Comm. Algebra, 26 (1998), pp. 3647--3652. Zbl0915.20008MR1647102
- [3] M. Asaad, On the solvability of finite groups, Arch. Math., 51 (1988), pp. 289--293. Zbl0656.20031MR964952
- [4] M. Asaad - P. Csörgö, The influence of minimal subgroups on the structure of finite groups, Arch. Math., 72 (1999), pp. 401--404. Zbl0938.20013MR1687528
- [5] M. Asaad - M. Ramadan - A. Shaalan, Influence of -quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroup of a finite group, Arch. Math., 56 (1991), pp. 521--527. Zbl0738.20026MR1106492
- [6] A. Ballester-Bolinches - R. Esteban-Romero, Sylow permutable subnormal subgroups of finite groups, J. Algebra, 251 (2002), pp. 727--738. Zbl1010.20013MR1917388
- [7] A. Ballester-Bolinches - R. Esteban-Romero, Sylow permutable subnormal subgroups of finite groups, II, Bull. Austral. Math. Soc., 64 (2001), pp. 479--486. Zbl0999.20012MR1878899
- [8] A. Ballester-Bolinches - L. M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006. Zbl1102.20016MR2241927
- [9] A. Ballester-Bolinches - M. C. Pedraza-Aguilera, On minimal subgroups of finite groups, Acta Math. Hungar., 73 (1996), pp. 335--342. Zbl0930.20021MR1428040
- [10] J. C. Beidleman - B. Brewster - D. J. S. Robinson, Criteria for permutability to be transitive in finite groups, J. Algebra, 222 (1999), pp. 400--412. Zbl0948.20015MR1733679
- [11] J. C. Beidleman - H. Heineken - M. F. Ragland, Solvable -groups, strong Sylow bases and mutually permutable products, J. Algebra, 321 (7) (2009), pp. 2022--2027. Zbl1190.20015MR2494755
- [12] R. A. Bryce - J. Cossey, The Wielandt subgroup of a finite soluble group, J. London Math. Soc., 40 (1989), pp. 244--256. Zbl0734.20010MR1044272
- [13] J. Buckley, Finite groups whose minimal subgroups are normal, Math. Z., 15 (1970), pp. 15--17. Zbl0202.02303MR262359
- [14] K. Doerk, Minimal nicht uberauflosbare, endlicher Gruppen, Math. Z., 91 (1966), pp. 198--205. Zbl0135.05401MR191962
- [15] K. Doerk - T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin - New York, 1992. Zbl0753.20001MR1169099
- [16] T. M. Gagen, Topics in Finite Groups, Cambridge University Press, 1976. Zbl0324.20013MR407127
- [17] W. Gaschütz, Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math., 198 (1957), pp. 87--92. Zbl0077.25003MR91277
- [18] D. Gorenstein, Finite Groups, Harper & Row Publishers, New York - Evanston - London, 1968. Zbl0185.05701MR231903
- [19] B. Huppert, Endliche Gruppen I, Springer, Berlin - Heidelberg - New York, 1967. Zbl0412.20002MR224703
- [20] B. Huppert, Normalteiler and maximale Untergruppen endlicher Gruppen, Math. Z., 60 (1954), pp. 409--434. Zbl0057.25303MR64771
- [21] B. Huppert - N. Blackburn, Finite Groups III, Springer - Verlag, Berlin - New York, 1982. Zbl0514.20002MR662826
- [22] O. H. Kegel, Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z., 78 (1962), pp. 205--221. Zbl0102.26802MR147527
- [23] Y. Li, On -semipermutable and -normal subgroups of finite groups, Arabian J. Sci. Engineering, 34(2A) (2009), pp. 167--175.
- [24] Y. Li - L. Wang - Y. Wang, Finite groups in which ()-semipermutability is a transitive relation, Internat. J. Algebra, 2(3) (2008), pp. 143--152. Zbl1181.20024MR2417529
- [25] Y. Li - Y. Wang - H. Wei, The influence of -quasinormality of some subgroups of a finite group, Arch. Math., 81 (2003), pp. 245--252. Zbl1053.20017MR2013253
- [26] Y. Li - Y. Wang, The influence of minimal subgroups on the structure of a finite group, Proc. Amer. Math. Soc., 131 (2002), pp. 337--341. Zbl1028.20015MR1933321
- [27] V. O. Lukyanenko - A. N. Skiba, On -quasinormal and weakly -quasinormal subgroups of finite groups, Math. Sci. Res. J., 12(10) (2008), pp. 243--257. Zbl1179.20018MR2493074
- [28] V. O. Lukyanenko - A. N. Skiba, On weakly -quasinormal subgroups of finite groups, Acta Math. Hungar., 125 (3) (2009), pp. 237--248. Zbl1207.20009MR2557033
- [29] M. Ramadan, Influence of normality on maximal subgroups of Sylow subgroups of a finite group, Acta Math. Hungar., 59 (1992), pp. 107--110. Zbl0802.20019MR1160206
- [30] D. J. S. Robinson, A note of finite groups in which normality is transitive, Proc. Amer. Math. Soc., 19 (1968), pp. 933--937. Zbl0159.31002MR230808
- [31] P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra, 182 (1998), pp. 285--293. Zbl0910.20015MR1643106
- [32] V. I. Sergienko, A criterion for the -solubility of finite groups, Mat. Zam., 9 (1971), pp. 375--383 (Russian, English translation in Math. Notes, 9 (1971), pp. 216--220). Zbl0232.20023MR284506
- [33] A. Shaalan, The influence of -permutability of some subgroups, Acta Math. Hungar., 56 (1990), pp. 287--293. Zbl0725.20018MR1111314
- [34] L. A. Shemetkov, Formations of Finite Groups, Nauka, Moscow, 1978. Zbl0496.20014MR519875
- [35] L. A. Shemetkov - A. N. Skiba, Formations of Algebraic Systems, Nauka, Moscow, 1989. Zbl0667.08001MR1007307
- [36] A. N. Skiba, A characterization of the hypercyclically embedded subgroups of finite groups, J. Pure Appl. Algebra, (2010), DOI: 10.1016/j.jpaa.2010.04.017. Zbl1206.20020
- [37] S. Srinivasan, Two sufficient conditions for supersolubility of finite groups, Israel J. Math., 3 (35) (1980), pp. 210--214. Zbl0437.20012MR576471
- [38] L. Wang - Y. Wang, On -semipermutable maximal and minimal subgroups of Sylow -subgroups of finite groups, Comm. Algebra, 34 (2006), pp. 143--149. Zbl1087.20015MR2194354
- [39] G. Zacher, I gruppi risolubili finiti in cui i sottogrupi di composizione coincidono con i sottogruppi quasi-normali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 37 (8) (1964), pp. 150--154. Zbl0136.28302MR174633
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.