On the volume of intersection of three independent Wiener sausages
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 2, page 313-337
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topvan den Berg, M.. "On the volume of intersection of three independent Wiener sausages." Annales de l'I.H.P. Probabilités et statistiques 46.2 (2010): 313-337. <http://eudml.org/doc/239916>.
@article{vandenBerg2010,
abstract = {Let K be a compact, non-polar set in ℝm, m≥3 and let SKi(t)=\{Bi(s)+y: 0≤s≤t, y∈K\} be Wiener sausages associated to independent brownian motions Bi, i=1, 2, 3 starting at 0. The expectation of volume of ⋂i=13SKi(t) with respect to product measure is obtained in terms of the equilibrium measure of K in the limit of large t.},
author = {van den Berg, M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Wiener sausage; equilibrium measure; Brownian motion},
language = {eng},
number = {2},
pages = {313-337},
publisher = {Gauthier-Villars},
title = {On the volume of intersection of three independent Wiener sausages},
url = {http://eudml.org/doc/239916},
volume = {46},
year = {2010},
}
TY - JOUR
AU - van den Berg, M.
TI - On the volume of intersection of three independent Wiener sausages
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 2
SP - 313
EP - 337
AB - Let K be a compact, non-polar set in ℝm, m≥3 and let SKi(t)={Bi(s)+y: 0≤s≤t, y∈K} be Wiener sausages associated to independent brownian motions Bi, i=1, 2, 3 starting at 0. The expectation of volume of ⋂i=13SKi(t) with respect to product measure is obtained in terms of the equilibrium measure of K in the limit of large t.
LA - eng
KW - Wiener sausage; equilibrium measure; Brownian motion
UR - http://eudml.org/doc/239916
ER -
References
top- [1] S. Albeverio and X. Y. Zhou. Intersections of random walks and Wiener sausages in four dimensions. Acta Appl. Math. 45 (1996) 195–237. Zbl0858.60043MR1414282
- [2] R. Fernández, J. Fröhlich and A. D. Sokal. Random Walks, Critical Phenomena and Triviality in Quantum Field Theory. Texts and Monographs in Physics. Springer, New York, 1992. Zbl0761.60061MR1219313
- [3] P. B. Gilkey. Asymptotic Formulae in Spectral Geometry. Studies in Advanced Mathematics. Chapman & Hall, Boca Raton, 2004. Zbl1080.58023MR2040963
- [4] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products. Academic Press, San Diego, 1994. Zbl0918.65001MR1243179
- [5] G. Hardy, J. Littlewood and G. Polya. Inequalities. Cambridge Univ. Press, London, 1952. Zbl0047.05302MR46395
- [6] K. M. Khanin, A. E. Mazel, S. B. Shlosman and Ya. G. Sinai. Loop condensation effects in the behaviour of random walks. In The Dynkin Festschrift, Markov Processes and Their Applications 167–184. M. Freidlin (ed.). Progr. Probab. 34. Birkhäuser, Boston, 1994. Zbl0814.60063MR1311718
- [7] G. Lawler. Intersections of Random Walks. Probability and Its Applications. Birkhäuser, Boston, 1991. Zbl0925.60078MR1117680
- [8] J.-F. Le Gall. Sur une conjecture de M. Kac. Probab. Theory Related Fields 78 (1988) 389–402. Zbl0655.60067MR949180
- [9] J.-F. Le Gall. Wiener sausage and self-intersection local times. J. Funct. Anal. 88 (1990) 299–341. Zbl0697.60081MR1038444
- [10] J.-F. Le Gall. Some properties of planar Brownian motion. In École d’Été de Probabilités de Saint-Flour XX, 1990111–235. Lecture Notes in Mathematics 1527. Springer, Berlin, 1992. Zbl0779.60068MR1229519
- [11] N. Madras and G. Slade. The Self-Avoiding Walk. Birkhäuser, Boston, 1993. Zbl0872.60076MR1197356
- [12] S. C. Port. Asymptotic expansions for the expected volume of a stable sausage. Ann. Probab. 18 (1990) 492–523. Zbl0705.60061MR1055417
- [13] S. C. Port and C. J. Stone. Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978. Zbl0413.60067MR492329
- [14] F. Spitzer. Electrostatic capacity and Brownian motion. Z. Wahrsch. Verw. Gebiete 3 (1964) 110–121. Zbl0126.33505MR172343
- [15] A. S. Sznitman. Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer, Berlin, 1998. Zbl0815.60077MR1717054
- [16] M. van den Berg. On the expected volume of intersection of independent Wiener sausages and the asymptotic behaviour of some related integrals. J. Funct. Anal. 222 (2005) 114–128. Zbl1077.60056MR2129767
- [17] M. van den Berg and J.-F. Le Gall. Mean curvature and the heat equation. Math. Z. 215 (1994) 437–464. Zbl0791.58089MR1262526
- [18] M. van den Berg, E. Bolthausen and F. den Hollander. On the volume of intersection of two Wiener sausages. Ann. Math. 159 (2004) 741–782. Zbl1165.60316MR2081439
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.