On the volume of intersection of three independent Wiener sausages

M. van den Berg

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 2, page 313-337
  • ISSN: 0246-0203

Abstract

top
Let K be a compact, non-polar set in ℝm, m≥3 and let SKi(t)={Bi(s)+y: 0≤s≤t, y∈K} be Wiener sausages associated to independent brownian motions Bi, i=1, 2, 3 starting at 0. The expectation of volume of ⋂i=13SKi(t) with respect to product measure is obtained in terms of the equilibrium measure of K in the limit of large t.

How to cite

top

van den Berg, M.. "On the volume of intersection of three independent Wiener sausages." Annales de l'I.H.P. Probabilités et statistiques 46.2 (2010): 313-337. <http://eudml.org/doc/239916>.

@article{vandenBerg2010,
abstract = {Let K be a compact, non-polar set in ℝm, m≥3 and let SKi(t)=\{Bi(s)+y: 0≤s≤t, y∈K\} be Wiener sausages associated to independent brownian motions Bi, i=1, 2, 3 starting at 0. The expectation of volume of ⋂i=13SKi(t) with respect to product measure is obtained in terms of the equilibrium measure of K in the limit of large t.},
author = {van den Berg, M.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Wiener sausage; equilibrium measure; Brownian motion},
language = {eng},
number = {2},
pages = {313-337},
publisher = {Gauthier-Villars},
title = {On the volume of intersection of three independent Wiener sausages},
url = {http://eudml.org/doc/239916},
volume = {46},
year = {2010},
}

TY - JOUR
AU - van den Berg, M.
TI - On the volume of intersection of three independent Wiener sausages
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 2
SP - 313
EP - 337
AB - Let K be a compact, non-polar set in ℝm, m≥3 and let SKi(t)={Bi(s)+y: 0≤s≤t, y∈K} be Wiener sausages associated to independent brownian motions Bi, i=1, 2, 3 starting at 0. The expectation of volume of ⋂i=13SKi(t) with respect to product measure is obtained in terms of the equilibrium measure of K in the limit of large t.
LA - eng
KW - Wiener sausage; equilibrium measure; Brownian motion
UR - http://eudml.org/doc/239916
ER -

References

top
  1. [1] S. Albeverio and X. Y. Zhou. Intersections of random walks and Wiener sausages in four dimensions. Acta Appl. Math. 45 (1996) 195–237. Zbl0858.60043MR1414282
  2. [2] R. Fernández, J. Fröhlich and A. D. Sokal. Random Walks, Critical Phenomena and Triviality in Quantum Field Theory. Texts and Monographs in Physics. Springer, New York, 1992. Zbl0761.60061MR1219313
  3. [3] P. B. Gilkey. Asymptotic Formulae in Spectral Geometry. Studies in Advanced Mathematics. Chapman & Hall, Boca Raton, 2004. Zbl1080.58023MR2040963
  4. [4] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products. Academic Press, San Diego, 1994. Zbl0918.65001MR1243179
  5. [5] G. Hardy, J. Littlewood and G. Polya. Inequalities. Cambridge Univ. Press, London, 1952. Zbl0047.05302MR46395
  6. [6] K. M. Khanin, A. E. Mazel, S. B. Shlosman and Ya. G. Sinai. Loop condensation effects in the behaviour of random walks. In The Dynkin Festschrift, Markov Processes and Their Applications 167–184. M. Freidlin (ed.). Progr. Probab. 34. Birkhäuser, Boston, 1994. Zbl0814.60063MR1311718
  7. [7] G. Lawler. Intersections of Random Walks. Probability and Its Applications. Birkhäuser, Boston, 1991. Zbl0925.60078MR1117680
  8. [8] J.-F. Le Gall. Sur une conjecture de M. Kac. Probab. Theory Related Fields 78 (1988) 389–402. Zbl0655.60067MR949180
  9. [9] J.-F. Le Gall. Wiener sausage and self-intersection local times. J. Funct. Anal. 88 (1990) 299–341. Zbl0697.60081MR1038444
  10. [10] J.-F. Le Gall. Some properties of planar Brownian motion. In École d’Été de Probabilités de Saint-Flour XX, 1990111–235. Lecture Notes in Mathematics 1527. Springer, Berlin, 1992. Zbl0779.60068MR1229519
  11. [11] N. Madras and G. Slade. The Self-Avoiding Walk. Birkhäuser, Boston, 1993. Zbl0872.60076MR1197356
  12. [12] S. C. Port. Asymptotic expansions for the expected volume of a stable sausage. Ann. Probab. 18 (1990) 492–523. Zbl0705.60061MR1055417
  13. [13] S. C. Port and C. J. Stone. Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978. Zbl0413.60067MR492329
  14. [14] F. Spitzer. Electrostatic capacity and Brownian motion. Z. Wahrsch. Verw. Gebiete 3 (1964) 110–121. Zbl0126.33505MR172343
  15. [15] A. S. Sznitman. Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer, Berlin, 1998. Zbl0815.60077MR1717054
  16. [16] M. van den Berg. On the expected volume of intersection of independent Wiener sausages and the asymptotic behaviour of some related integrals. J. Funct. Anal. 222 (2005) 114–128. Zbl1077.60056MR2129767
  17. [17] M. van den Berg and J.-F. Le Gall. Mean curvature and the heat equation. Math. Z. 215 (1994) 437–464. Zbl0791.58089MR1262526
  18. [18] M. van den Berg, E. Bolthausen and F. den Hollander. On the volume of intersection of two Wiener sausages. Ann. Math. 159 (2004) 741–782. Zbl1165.60316MR2081439

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.