On the volume of intersection of three independent Wiener sausages
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 2, page 313-337
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] S. Albeverio and X. Y. Zhou. Intersections of random walks and Wiener sausages in four dimensions. Acta Appl. Math. 45 (1996) 195–237. Zbl0858.60043MR1414282
- [2] R. Fernández, J. Fröhlich and A. D. Sokal. Random Walks, Critical Phenomena and Triviality in Quantum Field Theory. Texts and Monographs in Physics. Springer, New York, 1992. Zbl0761.60061MR1219313
- [3] P. B. Gilkey. Asymptotic Formulae in Spectral Geometry. Studies in Advanced Mathematics. Chapman & Hall, Boca Raton, 2004. Zbl1080.58023MR2040963
- [4] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products. Academic Press, San Diego, 1994. Zbl0918.65001MR1243179
- [5] G. Hardy, J. Littlewood and G. Polya. Inequalities. Cambridge Univ. Press, London, 1952. Zbl0047.05302MR46395
- [6] K. M. Khanin, A. E. Mazel, S. B. Shlosman and Ya. G. Sinai. Loop condensation effects in the behaviour of random walks. In The Dynkin Festschrift, Markov Processes and Their Applications 167–184. M. Freidlin (ed.). Progr. Probab. 34. Birkhäuser, Boston, 1994. Zbl0814.60063MR1311718
- [7] G. Lawler. Intersections of Random Walks. Probability and Its Applications. Birkhäuser, Boston, 1991. Zbl0925.60078MR1117680
- [8] J.-F. Le Gall. Sur une conjecture de M. Kac. Probab. Theory Related Fields 78 (1988) 389–402. Zbl0655.60067MR949180
- [9] J.-F. Le Gall. Wiener sausage and self-intersection local times. J. Funct. Anal. 88 (1990) 299–341. Zbl0697.60081MR1038444
- [10] J.-F. Le Gall. Some properties of planar Brownian motion. In École d’Été de Probabilités de Saint-Flour XX, 1990111–235. Lecture Notes in Mathematics 1527. Springer, Berlin, 1992. Zbl0779.60068MR1229519
- [11] N. Madras and G. Slade. The Self-Avoiding Walk. Birkhäuser, Boston, 1993. Zbl0872.60076MR1197356
- [12] S. C. Port. Asymptotic expansions for the expected volume of a stable sausage. Ann. Probab. 18 (1990) 492–523. Zbl0705.60061MR1055417
- [13] S. C. Port and C. J. Stone. Brownian Motion and Classical Potential Theory. Academic Press, New York, 1978. Zbl0413.60067MR492329
- [14] F. Spitzer. Electrostatic capacity and Brownian motion. Z. Wahrsch. Verw. Gebiete 3 (1964) 110–121. Zbl0126.33505MR172343
- [15] A. S. Sznitman. Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer, Berlin, 1998. Zbl0815.60077MR1717054
- [16] M. van den Berg. On the expected volume of intersection of independent Wiener sausages and the asymptotic behaviour of some related integrals. J. Funct. Anal. 222 (2005) 114–128. Zbl1077.60056MR2129767
- [17] M. van den Berg and J.-F. Le Gall. Mean curvature and the heat equation. Math. Z. 215 (1994) 437–464. Zbl0791.58089MR1262526
- [18] M. van den Berg, E. Bolthausen and F. den Hollander. On the volume of intersection of two Wiener sausages. Ann. Math. 159 (2004) 741–782. Zbl1165.60316MR2081439