Entropy of random walk range
Itai Benjamini; Gady Kozma; Ariel Yadin; Amir Yehudayoff
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 4, page 1080-1092
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBenjamini, Itai, et al. "Entropy of random walk range." Annales de l'I.H.P. Probabilités et statistiques 46.4 (2010): 1080-1092. <http://eudml.org/doc/240018>.
@article{Benjamini2010,
abstract = {We study the entropy of the set traced by an n-step simple symmetric random walk on ℤd. We show that for d≥3, the entropy is of order n. For d=2, the entropy is of order n/log2n. These values are essentially governed by the size of the boundary of the trace.},
author = {Benjamini, Itai, Kozma, Gady, Yadin, Ariel, Yehudayoff, Amir},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; entropy},
language = {eng},
number = {4},
pages = {1080-1092},
publisher = {Gauthier-Villars},
title = {Entropy of random walk range},
url = {http://eudml.org/doc/240018},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Benjamini, Itai
AU - Kozma, Gady
AU - Yadin, Ariel
AU - Yehudayoff, Amir
TI - Entropy of random walk range
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 4
SP - 1080
EP - 1092
AB - We study the entropy of the set traced by an n-step simple symmetric random walk on ℤd. We show that for d≥3, the entropy is of order n. For d=2, the entropy is of order n/log2n. These values are essentially governed by the size of the boundary of the trace.
LA - eng
KW - random walk; entropy
UR - http://eudml.org/doc/240018
ER -
References
top- [1] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, New York, 1991. Zbl1140.94001MR1122806
- [2] G. F. Lawler. Intersections of Random Walks. Springer, New York, 1996. Zbl0925.60078
- [3] Y. Peres. Intersection-equivalence of Brownian paths and certain branching processes. Comm. Math. Phys. 177 (1996) 417–434. Zbl0851.60080MR1384142
- [4] P. Révész. Random Walk in Random and Non-Random Environments. World Scientific, Hackensack, NJ, 2005. Zbl1090.60001MR2168855
- [5] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, Berlin, 1991. Zbl0917.60006MR1083357
- [6] D. Windisch. Entropy of random walk range on uniformly transient and on uniformly recurrent graphs. Preprint. Available at http://arxiv.org/abs/1001.0355. Zbl1226.60070MR2659760
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.