Stochastic representations of derivatives of solutions of one-dimensional parabolic variational inequalities with Neumann boundary conditions

Mireille Bossy; Mamadou Cissé; Denis Talay

Annales de l'I.H.P. Probabilités et statistiques (2011)

  • Volume: 47, Issue: 2, page 395-424
  • ISSN: 0246-0203

Abstract

top
In this paper we explicit the derivative of the flows of one-dimensional reflected diffusion processes. We then get stochastic representations for derivatives of viscosity solutions of one-dimensional semilinear parabolic partial differential equations and parabolic variational inequalities with Neumann boundary conditions.

How to cite

top

Bossy, Mireille, Cissé, Mamadou, and Talay, Denis. "Stochastic representations of derivatives of solutions of one-dimensional parabolic variational inequalities with Neumann boundary conditions." Annales de l'I.H.P. Probabilités et statistiques 47.2 (2011): 395-424. <http://eudml.org/doc/240022>.

@article{Bossy2011,
abstract = {In this paper we explicit the derivative of the flows of one-dimensional reflected diffusion processes. We then get stochastic representations for derivatives of viscosity solutions of one-dimensional semilinear parabolic partial differential equations and parabolic variational inequalities with Neumann boundary conditions.},
author = {Bossy, Mireille, Cissé, Mamadou, Talay, Denis},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {forward backward SDEs with refections; Feynman–Kac formulae; derivatives of the flows of reflected SDEs and BSDEs; stochastic differential equations with refection; reflected backward stochastic differential equations; Feynman-Kac formula; derivatives of flows of reflected SDEs and BSDEs},
language = {eng},
number = {2},
pages = {395-424},
publisher = {Gauthier-Villars},
title = {Stochastic representations of derivatives of solutions of one-dimensional parabolic variational inequalities with Neumann boundary conditions},
url = {http://eudml.org/doc/240022},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Bossy, Mireille
AU - Cissé, Mamadou
AU - Talay, Denis
TI - Stochastic representations of derivatives of solutions of one-dimensional parabolic variational inequalities with Neumann boundary conditions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 2
SP - 395
EP - 424
AB - In this paper we explicit the derivative of the flows of one-dimensional reflected diffusion processes. We then get stochastic representations for derivatives of viscosity solutions of one-dimensional semilinear parabolic partial differential equations and parabolic variational inequalities with Neumann boundary conditions.
LA - eng
KW - forward backward SDEs with refections; Feynman–Kac formulae; derivatives of the flows of reflected SDEs and BSDEs; stochastic differential equations with refection; reflected backward stochastic differential equations; Feynman-Kac formula; derivatives of flows of reflected SDEs and BSDEs
UR - http://eudml.org/doc/240022
ER -

References

top
  1. [1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, 1964. Zbl0643.33001MR1225604
  2. [2] G. Barles. Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations. J. Differential Equations 106 (1993) 90–106. Zbl0786.35051MR1249178
  3. [3] C. Berthelot, M. Bossy and D. Talay. Numerical analysis and misspecifications in Finance: From model risk to localisation error estimates for nonlinear PDEs. In Stochastic Processes and Applications to Mathematical Finance 1–25. World Sci. Publ., River Edge, NJ, 2004. Zbl1191.91052MR2202690
  4. [4] A. N. Borodin and P. Salminen. Handbook of Brownian Motion Facts and Formulae. Birkhaüser, Basel, 2002. Zbl1012.60003MR1912205
  5. [5] N. Bouleau and F. Hirsch. Propriétés d’absolue continuité dans les espaces de Dirichlet et application aux équations différentielles stochastiques. In Séminaire de Probabilités XX, 1984–1985131–161. Lectures Notes in Math. 1204. Springer, Berlin, 1986. Zbl0642.60044MR942020
  6. [6] N. Bouleau and F. Hirsch. On the derivability, with respect to the initial data, of solution of a stochastic differential equation with Lipschitz coefficients. In Séminaire de Théorie du Potentiel, Paris, No. 9 39–57. Lecture Notes in Math. 1393. Springer, Berlin, 1989. Zbl0671.60053
  7. [7] N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.-C. Quenez. Reflected solution of backward SDE’s, and related obstacle problem for PDE’s. Ann. Probab. 25 (1997) 702–737. Zbl0899.60047MR1434123
  8. [8] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Graduated Texts in Mathematics 113. Springer, New York, 1988. Zbl0638.60065MR917065
  9. [9] L. Kruk, J. Lehoczky, K. Ramanan and S. Shreve. An explicit formula for the Skorokhod map on [0, a]. Ann. Probab. 35 (2007) 1740–1768. Zbl1139.60017MR2349573
  10. [10] D. Lépingle, D. Nualart and M. Sanz. Dérivation stochastique de diffusions réfléchies. Ann. Inst. H. Poincaré Probab. Statist. 25 (1989) 283–305. Zbl0688.60043MR1023953
  11. [11] J. Ma and J. Cvitanić. Reflected forward–backward SDE’s and obstacle problems with boundary conditions. J. Appl. Math. Stochastic Anal. 14 (2001) 113–138. Zbl1002.60065MR1838341
  12. [12] J. Ma and J. Zhang. Representation theorems for backward stochastic differential equations. Ann. Appl. Probab. 12 (2002) 1390–1418. Zbl1017.60067MR1936598
  13. [13] J. Ma and J. Zhang. Representations and regularities for solutions to BSDEs with reflections. Stochastic Process. Appl. 115 (2005) 539–569. Zbl1076.60049MR2128629
  14. [14] J. L. Menaldi. Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J. 32 (1983) 733–744. Zbl0492.60057MR711864
  15. [15] D. Nualart. The Malliavin Calculus and Related Topics. Springer, Berlin, 2006. Zbl1099.60003MR2200233
  16. [16] M. N’Zi, Y. Ouknine and A. Sulem. Regularity and representation of viscosity solutions of partial differential equations via backward stochastic differential equations. Stochastic Process. Appl. 116 (2006) 1319–1339. Zbl1147.35327MR2251811
  17. [17] E. Pardoux. Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order. In Stochastic Analysis and Related Topics, VI (Geilo, 1996) 79–127. Progr. Probab. 42. Birkhäuser, Boston, 1998. Zbl0893.60036MR1652339
  18. [18] E. Pardoux and S. G. Peng. Adapted solution of a backward stochastic differential equation. Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 (1990) 55–61. Zbl0692.93064MR1037747
  19. [19] E. Pardoux and S. Zhang. Generalized BSDEs and nonlinear Neumann boundary value problems. Probab. Theory Related Fields 110 (1998) 535–558. Zbl0909.60046MR1626963
  20. [20] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. A Series of Comprehensive Studies in Mathematics 293. Springer, Berlin, 1999. Zbl0917.60006MR1725357
  21. [21] L. Slominski. Euler’s approximations of solutions of SDEs with reflecting boundary. Stochastic Process. Appl. 94 (2001) 317–337. Zbl1053.60062MR1840835

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.