Stochastic representations of derivatives of solutions of one-dimensional parabolic variational inequalities with Neumann boundary conditions
Mireille Bossy; Mamadou Cissé; Denis Talay
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 2, page 395-424
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBossy, Mireille, Cissé, Mamadou, and Talay, Denis. "Stochastic representations of derivatives of solutions of one-dimensional parabolic variational inequalities with Neumann boundary conditions." Annales de l'I.H.P. Probabilités et statistiques 47.2 (2011): 395-424. <http://eudml.org/doc/240022>.
@article{Bossy2011,
abstract = {In this paper we explicit the derivative of the flows of one-dimensional reflected diffusion processes. We then get stochastic representations for derivatives of viscosity solutions of one-dimensional semilinear parabolic partial differential equations and parabolic variational inequalities with Neumann boundary conditions.},
author = {Bossy, Mireille, Cissé, Mamadou, Talay, Denis},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {forward backward SDEs with refections; Feynman–Kac formulae; derivatives of the flows of reflected SDEs and BSDEs; stochastic differential equations with refection; reflected backward stochastic differential equations; Feynman-Kac formula; derivatives of flows of reflected SDEs and BSDEs},
language = {eng},
number = {2},
pages = {395-424},
publisher = {Gauthier-Villars},
title = {Stochastic representations of derivatives of solutions of one-dimensional parabolic variational inequalities with Neumann boundary conditions},
url = {http://eudml.org/doc/240022},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Bossy, Mireille
AU - Cissé, Mamadou
AU - Talay, Denis
TI - Stochastic representations of derivatives of solutions of one-dimensional parabolic variational inequalities with Neumann boundary conditions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 2
SP - 395
EP - 424
AB - In this paper we explicit the derivative of the flows of one-dimensional reflected diffusion processes. We then get stochastic representations for derivatives of viscosity solutions of one-dimensional semilinear parabolic partial differential equations and parabolic variational inequalities with Neumann boundary conditions.
LA - eng
KW - forward backward SDEs with refections; Feynman–Kac formulae; derivatives of the flows of reflected SDEs and BSDEs; stochastic differential equations with refection; reflected backward stochastic differential equations; Feynman-Kac formula; derivatives of flows of reflected SDEs and BSDEs
UR - http://eudml.org/doc/240022
ER -
References
top- [1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, 1964. Zbl0643.33001MR1225604
- [2] G. Barles. Fully nonlinear Neumann type boundary conditions for second-order elliptic and parabolic equations. J. Differential Equations 106 (1993) 90–106. Zbl0786.35051MR1249178
- [3] C. Berthelot, M. Bossy and D. Talay. Numerical analysis and misspecifications in Finance: From model risk to localisation error estimates for nonlinear PDEs. In Stochastic Processes and Applications to Mathematical Finance 1–25. World Sci. Publ., River Edge, NJ, 2004. Zbl1191.91052MR2202690
- [4] A. N. Borodin and P. Salminen. Handbook of Brownian Motion Facts and Formulae. Birkhaüser, Basel, 2002. Zbl1012.60003MR1912205
- [5] N. Bouleau and F. Hirsch. Propriétés d’absolue continuité dans les espaces de Dirichlet et application aux équations différentielles stochastiques. In Séminaire de Probabilités XX, 1984–1985131–161. Lectures Notes in Math. 1204. Springer, Berlin, 1986. Zbl0642.60044MR942020
- [6] N. Bouleau and F. Hirsch. On the derivability, with respect to the initial data, of solution of a stochastic differential equation with Lipschitz coefficients. In Séminaire de Théorie du Potentiel, Paris, No. 9 39–57. Lecture Notes in Math. 1393. Springer, Berlin, 1989. Zbl0671.60053
- [7] N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M.-C. Quenez. Reflected solution of backward SDE’s, and related obstacle problem for PDE’s. Ann. Probab. 25 (1997) 702–737. Zbl0899.60047MR1434123
- [8] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Graduated Texts in Mathematics 113. Springer, New York, 1988. Zbl0638.60065MR917065
- [9] L. Kruk, J. Lehoczky, K. Ramanan and S. Shreve. An explicit formula for the Skorokhod map on [0, a]. Ann. Probab. 35 (2007) 1740–1768. Zbl1139.60017MR2349573
- [10] D. Lépingle, D. Nualart and M. Sanz. Dérivation stochastique de diffusions réfléchies. Ann. Inst. H. Poincaré Probab. Statist. 25 (1989) 283–305. Zbl0688.60043MR1023953
- [11] J. Ma and J. Cvitanić. Reflected forward–backward SDE’s and obstacle problems with boundary conditions. J. Appl. Math. Stochastic Anal. 14 (2001) 113–138. Zbl1002.60065MR1838341
- [12] J. Ma and J. Zhang. Representation theorems for backward stochastic differential equations. Ann. Appl. Probab. 12 (2002) 1390–1418. Zbl1017.60067MR1936598
- [13] J. Ma and J. Zhang. Representations and regularities for solutions to BSDEs with reflections. Stochastic Process. Appl. 115 (2005) 539–569. Zbl1076.60049MR2128629
- [14] J. L. Menaldi. Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J. 32 (1983) 733–744. Zbl0492.60057MR711864
- [15] D. Nualart. The Malliavin Calculus and Related Topics. Springer, Berlin, 2006. Zbl1099.60003MR2200233
- [16] M. N’Zi, Y. Ouknine and A. Sulem. Regularity and representation of viscosity solutions of partial differential equations via backward stochastic differential equations. Stochastic Process. Appl. 116 (2006) 1319–1339. Zbl1147.35327MR2251811
- [17] E. Pardoux. Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order. In Stochastic Analysis and Related Topics, VI (Geilo, 1996) 79–127. Progr. Probab. 42. Birkhäuser, Boston, 1998. Zbl0893.60036MR1652339
- [18] E. Pardoux and S. G. Peng. Adapted solution of a backward stochastic differential equation. Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 (1990) 55–61. Zbl0692.93064MR1037747
- [19] E. Pardoux and S. Zhang. Generalized BSDEs and nonlinear Neumann boundary value problems. Probab. Theory Related Fields 110 (1998) 535–558. Zbl0909.60046MR1626963
- [20] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. A Series of Comprehensive Studies in Mathematics 293. Springer, Berlin, 1999. Zbl0917.60006MR1725357
- [21] L. Slominski. Euler’s approximations of solutions of SDEs with reflecting boundary. Stochastic Process. Appl. 94 (2001) 317–337. Zbl1053.60062MR1840835
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.