Convexity estimates for flows by powers of the mean curvature
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)
- Volume: 5, Issue: 2, page 261-277
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Andrews, Contraction of convex hypersurfaces in Euclidian space, Calc. Var. Partial Differential Equations 2 (1994), 151–171. Zbl0805.35048MR1385524
- [2] B. Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999), 151–161. Zbl0936.35080MR1714339
- [3] B. Andrews, Moving surfaces by non-concave curvature functions, 2004, arXiv:math.DG/0402273. Zbl1203.53062MR2729317
- [4] B. Chow, Deforming convex hypersurfaces by the th root of the Gaussian curvature, J. Differential Geom. 22 (1985), 117–138. Zbl0589.53005MR826427
- [5] B. Chow, Deforming hypersurfaces by the square root of the scalar curvature, Invent. Math. 87 (1987), 63–82. Zbl0608.53005MR862712
- [6] E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math. 357 (1985), 1–22. Zbl0549.35061MR783531
- [7] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), 237–266. Zbl0556.53001MR772132
- [8] O. C. Schnürer, Surfaces contracting with speed , J. Differential Geom. 71 (2005), 347–363. Zbl1101.53002MR2198805
- [9] F. Schulze, Evolution of convex hypersurfaces by powers of the mean curvature, Math. Z. 251 (2005), 721–733. Zbl1087.53062MR2190140