Multivariate moment problems : geometry and indeterminateness
Mihai Putinar; Claus Scheiderer
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)
- Volume: 5, Issue: 2, page 137-157
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topPutinar, Mihai, and Scheiderer, Claus. "Multivariate moment problems : geometry and indeterminateness." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.2 (2006): 137-157. <http://eudml.org/doc/240335>.
@article{Putinar2006,
abstract = {The most accurate determinateness criteria for the multivariate moment problem require the density of polynomials in a weighted Lebesgue space of a generic representing measure. We propose a relaxation of such a criterion to the approximation of a single function, and based on this condition we analyze the impact of the geometry of the support on the uniqueness of the representing measure. In particular we show that a multivariate moment sequence is determinate if its support has dimension one and is virtually compact; a generalization to higher dimensions is also given. Among the one-dimensional sets which are not virtually compact, we show that at least a large subclass supports indeterminate moment sequences. Moreover, we prove that the determinateness of a moment sequence is implied by the same condition (in general easier to verify) of the push-forward sequence via finite morphisms.},
author = {Putinar, Mihai, Scheiderer, Claus},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {2},
pages = {137-157},
publisher = {Scuola Normale Superiore, Pisa},
title = {Multivariate moment problems : geometry and indeterminateness},
url = {http://eudml.org/doc/240335},
volume = {5},
year = {2006},
}
TY - JOUR
AU - Putinar, Mihai
AU - Scheiderer, Claus
TI - Multivariate moment problems : geometry and indeterminateness
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 2
SP - 137
EP - 157
AB - The most accurate determinateness criteria for the multivariate moment problem require the density of polynomials in a weighted Lebesgue space of a generic representing measure. We propose a relaxation of such a criterion to the approximation of a single function, and based on this condition we analyze the impact of the geometry of the support on the uniqueness of the representing measure. In particular we show that a multivariate moment sequence is determinate if its support has dimension one and is virtually compact; a generalization to higher dimensions is also given. Among the one-dimensional sets which are not virtually compact, we show that at least a large subclass supports indeterminate moment sequences. Moreover, we prove that the determinateness of a moment sequence is implied by the same condition (in general easier to verify) of the push-forward sequence via finite morphisms.
LA - eng
UR - http://eudml.org/doc/240335
ER -
References
top- [1] N. I. Akhiezer, “The Classical Moment Problem”, Oliver and Boyd, Edinburgh and London, 1965. Zbl0135.33803
- [2] H. Bauer, “Probability Theory”, De Gruyter, Berlin, 1996. Zbl0868.60001MR1385460
- [3] S. Bochner, “Harmonic Analysis and the Theory of Probability”, Univ. California Press, Berkeley, 1955. Zbl0068.11702MR72370
- [4] N. Bourbaki, “Algebra I”, Chapters 1–3. “Elements of Mathematics”, Springer, Berlin, 1989. Zbl0666.13001MR979982
- [5] J. Cimpric, S. Kuhlmann and C. Scheiderer, Work in progress on -invariant moment problems. Zbl1170.14041
- [6] A. Devinatz, Two parameter moment problems, Duke Math. J. 24 (1957), 481-498. Zbl0081.10104MR92019
- [7] B. Fuglede, The multidimensional moment problem, Expo. Math. 1 (1983), 47–65. Zbl0514.44006MR693807
- [8] H. Hamburger, Beiträge zur Konvergenztheorie der Stieltjesschen Kettenbrüche, Math. Z. 4 (1919), 186–222. Zbl47.0428.01MR1544361JFM47.0428.01
- [9] H. Hamburger, Über die Konvergenz eines mit einer Potenzreihe assoziierten Kettenbruchs, Math. Ann. 20 (1920), 31–46. Zbl47.0430.01MR1511955JFM47.0430.01
- [10] E. K. Haviland, On the momentum problem for distribution functions in more than one dimension, II, Amer. J. Math. 58 (1936), 164–168. Zbl0015.10901MR1507139JFM62.0483.01
- [11] G. M. Henkin and A. A. Shananin, Bernstein theorems and Radon transform. Application to the theory of production functions, In: “Mathematical Problems of Tomography”, Transl. Math. Monogr. 81, Amer. Math. Soc., Providence, RI, 1990, 189–223. Zbl0794.44003MR1104018
- [12] A. G. Kostyučenko and B. S. Mityagin, Positive-definite functionals on nuclear spaces, Trudy Moskov Mat. Obsc. (in Russian) 9 (1960), 283–316; English translation, I. M. Gelfand and S. G. Gindikin (eds.), in Amer. Math. Soc. Transl. (ser. 2) 93 (1970), 1–43. Zbl0117.09801MR124729
- [13] E. Nelson, Analytic vectors, Ann. of Math. 70 (1959), 572–615. Zbl0091.10704MR107176
- [14] A. E. Nussbaum, A commutativity theorem for unbounded operators in Hilbert space, Trans. Amer. Math. Soc. 140 (1969), 485–491. Zbl0181.40905MR242010
- [15] O. Perron, “Die Lehre von den Kettenbrüchen”, Zweite verbesserte Auflage. Chelsea Publ. Comp. (reprint), New York, 1950. Zbl0041.18206MR37384
- [16] L. C. Petersen, On the relation between the multidimensional moment problem and the one-dimensional moment problem, Math. Scand. 51 (1982), 361–366. Zbl0514.44007MR690537
- [17] C. Procesi and G. Schwarz, Inequalities defining orbit spaces, Invent. math. 81 (1985), 539–554. Zbl0578.14010MR807071
- [18] M. Riesz, Sur le problème des moments. Troisième Note, Ark. Mat. Astr. Fys. 17 (1923), 1–52. Zbl49.0195.01JFM49.0195.01
- [19] C. Scheiderer, Sums of squares on real algebraic curves, Math. Z. 245 (2003), 725–760. Zbl1056.14078MR2020709
- [20] K. Schmüdgen, On determinacy notions for the two dimensional moment problem, Ark. Math. 29 (1991), 277–284. Zbl0762.44004
- [21] J. A. Shohat and J. D. Tamarkin, “The Problem of Moments”, Amer. Math. Soc., Providence, R.I., 1943. Zbl0112.06902MR8438
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.