Fair-sized projective modules

Pavel Příhoda

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 123, page 141-168
  • ISSN: 0041-8994

How to cite

top

Příhoda, Pavel. "Fair-sized projective modules." Rendiconti del Seminario Matematico della Università di Padova 123 (2010): 141-168. <http://eudml.org/doc/240633>.

@article{Příhoda2010,
author = {Příhoda, Pavel},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {infinitely generated modules; superdecomposable projective modules; countably generated projective modules; Noetherian rings; semilocal rings; integral group rings; superdecomposable projective modules; universal enveloping algebras},
language = {eng},
pages = {141-168},
publisher = {Seminario Matematico of the University of Padua},
title = {Fair-sized projective modules},
url = {http://eudml.org/doc/240633},
volume = {123},
year = {2010},
}

TY - JOUR
AU - Příhoda, Pavel
TI - Fair-sized projective modules
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 123
SP - 141
EP - 168
LA - eng
KW - infinitely generated modules; superdecomposable projective modules; countably generated projective modules; Noetherian rings; semilocal rings; integral group rings; superdecomposable projective modules; universal enveloping algebras
UR - http://eudml.org/doc/240633
ER -

References

top
  1. [1] T. Akasaki, Idempotent ideals of integral group rings, J. Algebra, 23 (1972), pp. 343--346. Zbl0243.16007MR304420
  2. [2] F. W. Anderson - K. R. Fuller, Rings and categories of modules, Springer - Verlag, 1974. Zbl0765.16001MR417223
  3. [3] H. Bass, Big projective modules are free, Illinois J. Math. (1963), pp. 24--31. Zbl0115.26003MR143789
  4. [4] R. Camps - W. Dicks, On semilocal rings, Israel J. Math., 81 (1993), pp. 203--211. Zbl0802.16010MR1231187
  5. [5] C. W. Curtis - I. Reiner, Methods of representation theory with applications to finite groups and orders, Vol. 1, Wiley-Interscience (1981). MR632548
  6. [6] J. Dixmier, Enveloping algebras, Akademie - Verlag (Berlin, 1977). Zbl0346.17010MR498740
  7. [7] A. Hattori, Rank element of a projective module, Nagoya Math. J., 25 (1965), pp. 113--120. Zbl0142.28001MR175950
  8. [8] H. Kraft - L. W. Small - N. R. Wallach, Properties and examples of FCR-algebras, Manuscripta math., 104 (2001), pp. 443--450. Zbl1039.16027MR1836105
  9. [9] V. D. Mazurov - E. I. Khukhro, The Kourovka notebook. Unsolved problems in group theory, 15th augm. ed, Novosibirsk Institut Matematiki (2002). Zbl0999.20001MR1956290
  10. [10] T. Y. Lam, A first course in noncommutative rings, Springer, New York, 2001. Zbl0980.16001MR1838439
  11. [11] J. C. McConnell - J. C. Robson, Noncommutative noetherian rings, AMS, Providence, R. I., 2001. Zbl0980.16019MR1811901
  12. [12] G. Puninski, When a projective module is a direct sum of finitely generated modules, preprint, 2004. 
  13. [13] P. Příhoda, Projective modules are determined by their radical factors, J. Pure Appl. Algebra, 210 (2007), pp. 827--835. Zbl1124.16002MR2324609
  14. [14] K. W. Roggenkamp, Integral group rings of solvable finite groups have no idempotent ideals, Arch. Math., 25 (1974), pp. 125--128. Zbl0282.20002MR342549
  15. [15] L. W. Small - J. C. Robson, Idempotent ideals in P.I. rings, Journal London Math. Soc. (2), 14 (1976), pp. 120--122. Zbl0347.16012MR422336
  16. [16] R. G. Swan, Induced representations and projective modules, Ann. of Math., 71 (1960), pp. 552--578. Zbl0104.25102MR138688
  17. [17] R. G. Swan, The Grothendieck ring of a finite group, Topology, 2 (1963), pp. 85--110. Zbl0119.02905MR153722
  18. [18] J. M. Whitehead, Projective modules and their trace ideals, Comm. Algebra, 8 (19) (1980), pp. 1873--1901. Zbl0447.16018MR588450

NotesEmbed ?

top

You must be logged in to post comments.