Fair-sized projective modules

Pavel Příhoda

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 123, page 141-168
  • ISSN: 0041-8994

How to cite

top

Příhoda, Pavel. "Fair-sized projective modules." Rendiconti del Seminario Matematico della Università di Padova 123 (2010): 141-168. <http://eudml.org/doc/240633>.

@article{Příhoda2010,
author = {Příhoda, Pavel},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {infinitely generated modules; superdecomposable projective modules; countably generated projective modules; Noetherian rings; semilocal rings; integral group rings; superdecomposable projective modules; universal enveloping algebras},
language = {eng},
pages = {141-168},
publisher = {Seminario Matematico of the University of Padua},
title = {Fair-sized projective modules},
url = {http://eudml.org/doc/240633},
volume = {123},
year = {2010},
}

TY - JOUR
AU - Příhoda, Pavel
TI - Fair-sized projective modules
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 123
SP - 141
EP - 168
LA - eng
KW - infinitely generated modules; superdecomposable projective modules; countably generated projective modules; Noetherian rings; semilocal rings; integral group rings; superdecomposable projective modules; universal enveloping algebras
UR - http://eudml.org/doc/240633
ER -

References

top
  1. [1] T. Akasaki, Idempotent ideals of integral group rings, J. Algebra, 23 (1972), pp. 343--346. Zbl0243.16007MR304420
  2. [2] F. W. Anderson - K. R. Fuller, Rings and categories of modules, Springer - Verlag, 1974. Zbl0765.16001MR417223
  3. [3] H. Bass, Big projective modules are free, Illinois J. Math. (1963), pp. 24--31. Zbl0115.26003MR143789
  4. [4] R. Camps - W. Dicks, On semilocal rings, Israel J. Math., 81 (1993), pp. 203--211. Zbl0802.16010MR1231187
  5. [5] C. W. Curtis - I. Reiner, Methods of representation theory with applications to finite groups and orders, Vol. 1, Wiley-Interscience (1981). MR632548
  6. [6] J. Dixmier, Enveloping algebras, Akademie - Verlag (Berlin, 1977). Zbl0346.17010MR498740
  7. [7] A. Hattori, Rank element of a projective module, Nagoya Math. J., 25 (1965), pp. 113--120. Zbl0142.28001MR175950
  8. [8] H. Kraft - L. W. Small - N. R. Wallach, Properties and examples of FCR-algebras, Manuscripta math., 104 (2001), pp. 443--450. Zbl1039.16027MR1836105
  9. [9] V. D. Mazurov - E. I. Khukhro, The Kourovka notebook. Unsolved problems in group theory, 15th augm. ed, Novosibirsk Institut Matematiki (2002). Zbl0999.20001MR1956290
  10. [10] T. Y. Lam, A first course in noncommutative rings, Springer, New York, 2001. Zbl0980.16001MR1838439
  11. [11] J. C. McConnell - J. C. Robson, Noncommutative noetherian rings, AMS, Providence, R. I., 2001. Zbl0980.16019MR1811901
  12. [12] G. Puninski, When a projective module is a direct sum of finitely generated modules, preprint, 2004. 
  13. [13] P. Příhoda, Projective modules are determined by their radical factors, J. Pure Appl. Algebra, 210 (2007), pp. 827--835. Zbl1124.16002MR2324609
  14. [14] K. W. Roggenkamp, Integral group rings of solvable finite groups have no idempotent ideals, Arch. Math., 25 (1974), pp. 125--128. Zbl0282.20002MR342549
  15. [15] L. W. Small - J. C. Robson, Idempotent ideals in P.I. rings, Journal London Math. Soc. (2), 14 (1976), pp. 120--122. Zbl0347.16012MR422336
  16. [16] R. G. Swan, Induced representations and projective modules, Ann. of Math., 71 (1960), pp. 552--578. Zbl0104.25102MR138688
  17. [17] R. G. Swan, The Grothendieck ring of a finite group, Topology, 2 (1963), pp. 85--110. Zbl0119.02905MR153722
  18. [18] J. M. Whitehead, Projective modules and their trace ideals, Comm. Algebra, 8 (19) (1980), pp. 1873--1901. Zbl0447.16018MR588450

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.