Star stability and star regularity for Mori domains

Stefania Gabelli; Giampaolo Picozza

Rendiconti del Seminario Matematico della Università di Padova (2011)

  • Volume: 126, page 107-125
  • ISSN: 0041-8994

How to cite

top

Gabelli, Stefania, and Picozza, Giampaolo. "Star stability and star regularity for Mori domains." Rendiconti del Seminario Matematico della Università di Padova 126 (2011): 107-125. <http://eudml.org/doc/241038>.

@article{Gabelli2011,
author = {Gabelli, Stefania, Picozza, Giampaolo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {star operation; star stability; (semi)star operation; Clifford *-regularity; Mori domain; star class semigroup},
language = {eng},
pages = {107-125},
publisher = {Seminario Matematico of the University of Padua},
title = {Star stability and star regularity for Mori domains},
url = {http://eudml.org/doc/241038},
volume = {126},
year = {2011},
}

TY - JOUR
AU - Gabelli, Stefania
AU - Picozza, Giampaolo
TI - Star stability and star regularity for Mori domains
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2011
PB - Seminario Matematico of the University of Padua
VL - 126
SP - 107
EP - 125
LA - eng
KW - star operation; star stability; (semi)star operation; Clifford *-regularity; Mori domain; star class semigroup
UR - http://eudml.org/doc/241038
ER -

References

top
  1. [1] V. Barucci, Mori domains, Non-Noetherian Commutative Ring Theory; Recent Advances, Chapter 3, Kluwer Academic Publishers, 2000. Zbl1079.13509MR1858157
  2. [2] S. Bazzoni, Class semigroups of Prüfer domains, J. Algebra, 184 (1996), pp. 613–631. Zbl0856.13014MR1409233
  3. [3] S. Bazzoni, Groups in the class semigroups of Prüfer domains of finite character, Comm. Algebra, 28 (2000), pp. 5157–5167. Zbl0997.13005MR1785492
  4. [4] S. Bazzoni, Clifford regular domains, J. Algebra, 238 (2001), pp. 703–722. Zbl1027.13011MR1823781
  5. [5] S. Bazzoni, Finite character of finitely stable domains, J. Pure Appl. Algebra, to appear. Zbl1214.13007MR2769222
  6. [6] S. Bazzoni - L. Salce, Groups in the class semigroups of valuation domains, Israel J. Math., 95 (1996), pp. 135–155. Zbl0869.13006MR1418291
  7. [7] N. Bourbaki, Algèbre Commutative, Hermann, Paris, 1964. MR194450
  8. [8] G. W. Chang - M. Zafrullah, The w -integral closure of integral domains, J. Algebra, 295 (2006), pp. 195–210. Zbl1096.13008MR2188857
  9. [9] D. E. Dobbs - E. G. Houston - T. G. Lucas - M. Zafrullah, t -linked overrings and Prüfer v -multiplication domains, Comm. Algebra, 17 (1989), pp. 2835–2852. Zbl0691.13015MR1025612
  10. [10] S. El Baghdadi - M. Fontana - G. Picozza, Semistar Dedekind domains, J. Pure Applied Algebra, 193 (2004), pp. 27–60. Zbl1081.13003MR2076377
  11. [11] S. El Baghdadi - S. Gabelli, w -divisorial domains, J. Algebra, 285 (2005), pp. 335–355. Zbl1094.13037MR2119116
  12. [12] J. Elliot, Functorial properties of star operations, Comm. Algebra, 38 (2010), pp. 1466–1490. Zbl1200.13006MR2656588
  13. [13] M. Fontana - K. A. Loper, Kronecker function rings: a general approach, Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), Lecture Notes in Pure and Appl. Math., vol. 220 (Dekker, New York, 2001), pp. 189–205. Zbl1042.13002MR1836601
  14. [14] S. Gabelli - E. Houston, Ideal Theory in Pullbacks, Non-Noetherian Commutative Ring Theory; Recent Advances, Chapter 9, Kluwer Academic Publishers, 2000. Zbl1094.13501MR1858163
  15. [15] S. Gabelli - G. Picozza, Star-stable domains, J. Pure Applied Algebra, 208 (2007), pp. 853–866. Zbl1174.13004MR2283430
  16. [16] S. Gabelli - G. Picozza, Stability and regularity with respect to star operations, Comm. Algebra, to appear. Zbl1260.13004
  17. [17] R. Gilmer, Multiplicative ideal theory. Pure and Applied Mathematics, No. 12. Marcel Dekker, Inc., New York, 1972. Zbl0248.13001MR427289
  18. [18] F. Halter-Koch, Clifford semigroups of ideals in monoids and domains, Forum Math., 21 (2009), pp. 1001–1020. Zbl1189.13002MR2574145
  19. [19] J. R. Hedstrom - E. G. Houston, Pseudo-valuation domains. II. Pacific J. Math., 75, no. 1 (1978), pp. 137–147. Zbl0368.13002MR485811
  20. [20] S. Kabbaj - A. Mimouni, Class semigroups of integral domains, J. Algebra, 264 (2003), pp. 620–640. Zbl1027.13012MR1981425
  21. [21] S. Kabbaj - A. Mimouni, t -Class semigroups of integral domains, J. reine angew. Math., 612 (2007), pp. 213–229. Zbl1151.13003MR2364057
  22. [22] S. Kabbaj - A. Mimouni, Constituent groups of Clifford semigroups arising from t -closure, J. Algebra, 321 (2009), pp. 1443–1452. Zbl1173.13020MR2494399
  23. [23] S. Kabbaj - A. Mimouni, t -Class semigroups of Noetherian domains, Commutative Algebra and its applications, de Gruyter (2009), pp. 283–290. Zbl1177.13029MR2606293
  24. [24] B. G. Kang, Prüfer v -multiplication domains and the ring R [ X ] N v , J. Algebra, 123 (1989), pp. 151-170. Zbl0668.13002MR1000481
  25. [25] A. Mimouni, Pullbacks and coherent-like properties, Advances in commutative ring theory (Fez, 1997), pp. 437–459, Lecture Notes in Pure and Appl. Math., 205 (Dekker, New York, 1999). Zbl0963.13005MR1767424
  26. [26] B. Olberding, Globalizing local properties of Prüfer domains, J. Algebra, 205, no. 2 (1998), pp. 480–504. Zbl0928.13013MR1632741
  27. [27] B. Olberding, Stability, duality and 2 -generated ideals, and a canonical decomposition of modules, Rend. Sem. Mat. Univ. Padova, 106 (2001), pp. 261–290. Zbl1072.13506MR1876223
  28. [28] B. Olberding, On the classification of stable domains, J. Algebra, 243, no. 1 (2001), pp. 177–197. Zbl1042.13013MR1851660
  29. [29] B. Olberding, On the structure of stable domains, Comm. Algebra, 30, no. 2 (2002), pp. 877–895. Zbl1073.13014MR1883031
  30. [30] B. Olberding, An exceptional class of stable domains, Communication at AMS Meeting 991, Special Session on Commutative Rings and Monoids, Chapel Hill, NC, October 2003. 
  31. [31] G. Picozza, Star operations on overrings and semistar operations, Comm. Algebra, 33 (2005), pp. 2051–2073. Zbl1088.13001MR2150860
  32. [32] D. Rush, Two-generated ideals and representations of abelian groups over valuation rings. J. Algebra, 177, no. 1 (1995), pp. 77–101. Zbl0846.16023MR1356360
  33. [33] Wang Fanggui - R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra, 135 (1999), pp. 155–165. Zbl0943.13017MR1667555
  34. [34] P. Zanardo - U. Zannier, The class semigroup of orders in number fields, Math. Proc. Cambridge Philos. Soc., 115 (1994), pp. 379–391. Zbl0828.11068MR1269926

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.