Star stability and star regularity for Mori domains
Stefania Gabelli; Giampaolo Picozza
Rendiconti del Seminario Matematico della Università di Padova (2011)
- Volume: 126, page 107-125
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGabelli, Stefania, and Picozza, Giampaolo. "Star stability and star regularity for Mori domains." Rendiconti del Seminario Matematico della Università di Padova 126 (2011): 107-125. <http://eudml.org/doc/241038>.
@article{Gabelli2011,
author = {Gabelli, Stefania, Picozza, Giampaolo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {star operation; star stability; (semi)star operation; Clifford *-regularity; Mori domain; star class semigroup},
language = {eng},
pages = {107-125},
publisher = {Seminario Matematico of the University of Padua},
title = {Star stability and star regularity for Mori domains},
url = {http://eudml.org/doc/241038},
volume = {126},
year = {2011},
}
TY - JOUR
AU - Gabelli, Stefania
AU - Picozza, Giampaolo
TI - Star stability and star regularity for Mori domains
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2011
PB - Seminario Matematico of the University of Padua
VL - 126
SP - 107
EP - 125
LA - eng
KW - star operation; star stability; (semi)star operation; Clifford *-regularity; Mori domain; star class semigroup
UR - http://eudml.org/doc/241038
ER -
References
top- [1] V. Barucci, Mori domains, Non-Noetherian Commutative Ring Theory; Recent Advances, Chapter 3, Kluwer Academic Publishers, 2000. Zbl1079.13509MR1858157
- [2] S. Bazzoni, Class semigroups of Prüfer domains, J. Algebra, 184 (1996), pp. 613–631. Zbl0856.13014MR1409233
- [3] S. Bazzoni, Groups in the class semigroups of Prüfer domains of finite character, Comm. Algebra, 28 (2000), pp. 5157–5167. Zbl0997.13005MR1785492
- [4] S. Bazzoni, Clifford regular domains, J. Algebra, 238 (2001), pp. 703–722. Zbl1027.13011MR1823781
- [5] S. Bazzoni, Finite character of finitely stable domains, J. Pure Appl. Algebra, to appear. Zbl1214.13007MR2769222
- [6] S. Bazzoni - L. Salce, Groups in the class semigroups of valuation domains, Israel J. Math., 95 (1996), pp. 135–155. Zbl0869.13006MR1418291
- [7] N. Bourbaki, Algèbre Commutative, Hermann, Paris, 1964. MR194450
- [8] G. W. Chang - M. Zafrullah, The -integral closure of integral domains, J. Algebra, 295 (2006), pp. 195–210. Zbl1096.13008MR2188857
- [9] D. E. Dobbs - E. G. Houston - T. G. Lucas - M. Zafrullah, -linked overrings and Prüfer -multiplication domains, Comm. Algebra, 17 (1989), pp. 2835–2852. Zbl0691.13015MR1025612
- [10] S. El Baghdadi - M. Fontana - G. Picozza, Semistar Dedekind domains, J. Pure Applied Algebra, 193 (2004), pp. 27–60. Zbl1081.13003MR2076377
- [11] S. El Baghdadi - S. Gabelli, -divisorial domains, J. Algebra, 285 (2005), pp. 335–355. Zbl1094.13037MR2119116
- [12] J. Elliot, Functorial properties of star operations, Comm. Algebra, 38 (2010), pp. 1466–1490. Zbl1200.13006MR2656588
- [13] M. Fontana - K. A. Loper, Kronecker function rings: a general approach, Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), Lecture Notes in Pure and Appl. Math., vol. 220 (Dekker, New York, 2001), pp. 189–205. Zbl1042.13002MR1836601
- [14] S. Gabelli - E. Houston, Ideal Theory in Pullbacks, Non-Noetherian Commutative Ring Theory; Recent Advances, Chapter 9, Kluwer Academic Publishers, 2000. Zbl1094.13501MR1858163
- [15] S. Gabelli - G. Picozza, Star-stable domains, J. Pure Applied Algebra, 208 (2007), pp. 853–866. Zbl1174.13004MR2283430
- [16] S. Gabelli - G. Picozza, Stability and regularity with respect to star operations, Comm. Algebra, to appear. Zbl1260.13004
- [17] R. Gilmer, Multiplicative ideal theory. Pure and Applied Mathematics, No. 12. Marcel Dekker, Inc., New York, 1972. Zbl0248.13001MR427289
- [18] F. Halter-Koch, Clifford semigroups of ideals in monoids and domains, Forum Math., 21 (2009), pp. 1001–1020. Zbl1189.13002MR2574145
- [19] J. R. Hedstrom - E. G. Houston, Pseudo-valuation domains. II. Pacific J. Math., 75, no. 1 (1978), pp. 137–147. Zbl0368.13002MR485811
- [20] S. Kabbaj - A. Mimouni, Class semigroups of integral domains, J. Algebra, 264 (2003), pp. 620–640. Zbl1027.13012MR1981425
- [21] S. Kabbaj - A. Mimouni, -Class semigroups of integral domains, J. reine angew. Math., 612 (2007), pp. 213–229. Zbl1151.13003MR2364057
- [22] S. Kabbaj - A. Mimouni, Constituent groups of Clifford semigroups arising from -closure, J. Algebra, 321 (2009), pp. 1443–1452. Zbl1173.13020MR2494399
- [23] S. Kabbaj - A. Mimouni, -Class semigroups of Noetherian domains, Commutative Algebra and its applications, de Gruyter (2009), pp. 283–290. Zbl1177.13029MR2606293
- [24] B. G. Kang, Prüfer -multiplication domains and the ring , J. Algebra, 123 (1989), pp. 151-170. Zbl0668.13002MR1000481
- [25] A. Mimouni, Pullbacks and coherent-like properties, Advances in commutative ring theory (Fez, 1997), pp. 437–459, Lecture Notes in Pure and Appl. Math., 205 (Dekker, New York, 1999). Zbl0963.13005MR1767424
- [26] B. Olberding, Globalizing local properties of Prüfer domains, J. Algebra, 205, no. 2 (1998), pp. 480–504. Zbl0928.13013MR1632741
- [27] B. Olberding, Stability, duality and -generated ideals, and a canonical decomposition of modules, Rend. Sem. Mat. Univ. Padova, 106 (2001), pp. 261–290. Zbl1072.13506MR1876223
- [28] B. Olberding, On the classification of stable domains, J. Algebra, 243, no. 1 (2001), pp. 177–197. Zbl1042.13013MR1851660
- [29] B. Olberding, On the structure of stable domains, Comm. Algebra, 30, no. 2 (2002), pp. 877–895. Zbl1073.13014MR1883031
- [30] B. Olberding, An exceptional class of stable domains, Communication at AMS Meeting 991, Special Session on Commutative Rings and Monoids, Chapel Hill, NC, October 2003.
- [31] G. Picozza, Star operations on overrings and semistar operations, Comm. Algebra, 33 (2005), pp. 2051–2073. Zbl1088.13001MR2150860
- [32] D. Rush, Two-generated ideals and representations of abelian groups over valuation rings. J. Algebra, 177, no. 1 (1995), pp. 77–101. Zbl0846.16023MR1356360
- [33] Wang Fanggui - R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra, 135 (1999), pp. 155–165. Zbl0943.13017MR1667555
- [34] P. Zanardo - U. Zannier, The class semigroup of orders in number fields, Math. Proc. Cambridge Philos. Soc., 115 (1994), pp. 379–391. Zbl0828.11068MR1269926
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.