Cycles and bipartite graph on conjugacy class of groups

Bijan Taeri

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 123, page 233-248
  • ISSN: 0041-8994

How to cite

top

Taeri, Bijan. "Cycles and bipartite graph on conjugacy class of groups." Rendiconti del Seminario Matematico della Università di Padova 123 (2010): 233-248. <http://eudml.org/doc/241223>.

@article{Taeri2010,
author = {Taeri, Bijan},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {bipartite divisor graph; conjugacy class; cycles},
language = {eng},
pages = {233-248},
publisher = {Seminario Matematico of the University of Padua},
title = {Cycles and bipartite graph on conjugacy class of groups},
url = {http://eudml.org/doc/241223},
volume = {123},
year = {2010},
}

TY - JOUR
AU - Taeri, Bijan
TI - Cycles and bipartite graph on conjugacy class of groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 123
SP - 233
EP - 248
LA - eng
KW - bipartite divisor graph; conjugacy class; cycles
UR - http://eudml.org/doc/241223
ER -

References

top
  1. [1] R. Baer, Group elements of prime power index. Trans. Amer. Math. Soc., 75 (1953), pp. 20--47. Zbl0051.25702MR55340
  2. [2] E. A. Bertram - M. Herzog - A. Mann, On a graph related to conjugacy classes of groups, Bull. London Math. Soc., 22 (1990), pp. 569--575. Zbl0743.20017MR1099007
  3. [3] D. Bubboloni - S. Dolfi - M. A. Iranmanesh - C. E. Praeger, On bipartite divisor graphs for group conjugacy class sizes, J. Pure Appl. Algebra, 213 (2009), pp. 1722--1734. Zbl1176.20027MR2518171
  4. [4] C. Casolo, Finite groups with small conjugacy classes. Manuscripta Math., 82 (1994), pp. 171--189. Zbl0819.20024MR1256158
  5. [5] A. R. Camina - R. D. Camina, Implications of conjugacy class size, J. Group Theory, 1 (1998), pp. 257--269. Zbl0916.20015MR1633180
  6. [6] A. R. Camina - R. D. Camina, Coprime conjugacy class sizes, Asian-European J. Math., 2 (2009), pp. 183--190. Zbl1185.20024MR2532697
  7. [7] D. Chillag - M. Herzog - A. Mann, On the diameter of a graph related to conjugacy classes of groups, Bull. London Math. Soc., 113, No. 2 (1993), pp. 255--262. Zbl0810.20018MR1209249
  8. [8] J. H. Conway - R. T. Curtis - S. P. Norton - R. A. Wilson, ATLAS of Finite Groups, Oxford Univ. Press (Oxford, 1985). Zbl0568.20001MR827219
  9. [9] S. Dolfi - E. Jabara, The structure of finite groups of conjugate rank 2, Bull. London Math. Soc. To appear. Zbl1188.20021MR2557472
  10. [10] B. Huppert, Endliche Gruppen I, Springer-Verlag (Berlin, 1967). Zbl0412.20002MR224703
  11. [11] M. A. Iranmanesh - C. E. Praeger, Bipartite divisor graphs for integer subsets (submitted for publication). Zbl1230.05235
  12. [12] N. Itô, On finite groups with given conjugate types II, Osaka J. Math., 7 (1970), pp. 231--251. Zbl0198.04305MR263910
  13. [13] N. Itô, On Finite Groups with Given Conjugate Types. III, Math. Z., 117 (1970), pp. 267--271 Zbl0209.05501MR289625
  14. [14] L. S. Kazarin, On groups with isolated conjugacy classes, Izv. Vyssh. Uchebn Zaved. Mat., 25 (1981), pp. 40--45. Zbl0516.20011MR636915
  15. [15] M. L. Lewis, Solvable groups having almost relatively prime distinct irreducible character degrees, J. Algebra, 174 (1995), pp. 197--216. Zbl0833.20011MR1332867
  16. [16] M. Fang - P. Zhang, Finite groups with graphs containing no triangles, J. Algebra, 264 (2003), pp. 613--619. Zbl1024.20021MR1981424
  17. [17] J. Rebmann, F -Gruppen, Arch. Math., Vol. XXII (1971), pp. 225--230. Zbl0221.20032MR291275
  18. [18] M. Suzuki, Group Theory I, Springer-Verlag (New York, 1986). Zbl0472.20001MR815926

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.