Infinite products of random matrices and repeated interaction dynamics
Laurent Bruneau; Alain Joye; Marco Merkli
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 2, page 442-464
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Arnold. Random Dynamical Systems. Springer, Berlin, 2003. Zbl0906.34001MR1374107
- [2] S. Attal, A. Joye and C.-A. Pillet (Eds). Open Quantum Systems I-III. Lecture Notes in Mathematics 1880–1882. Springer, Berlin, 2006. MR2261249
- [3] E. A. Azoff. Borel measurability in linear algebra. Proc. Amer. Math. Soc. 42 (1974) 346–350. Zbl0286.15006MR327799
- [4] A. Beck and J. T. Schwartz. A vector-valued random ergodic theorem. Proc. Amer. Math. Soc. 8 (1957) 1049–1059. Zbl0084.13702MR98162
- [5] O. Bratteli and D. W. Robinson. Operator Algebras and Quantum Statistical Mechanics. Texts and Monographs in Physics 1,2, 2nd edition. Springer, New York, 1996. Zbl0905.46046
- [6] R. Bru, L. Elsner and M. Neumann. Convergence of infinite products of matrices and inner–outer iteration schemes. Electron. Trans. Numer. Anal. 2 (1994) 183–193. Zbl0852.65035MR1308895
- [7] M. Brune, J. M. Raimond and S. Haroche. Theory of the Rydberg-atom two-photon micromaser. Phys. Rev. A 35 (1987) 154–163.
- [8] L. Bruneau, A. Joye and M. Merkli. Asymptotics of repeated interaction quantum systems. J. Funct. Anal. 239 (2006) 310–344. Zbl1118.81008MR2258226
- [9] L. Bruneau, A. Joye and M. Merkli. Random repeated interaction quantum systems. Comm. Math. Phys. 284 (2008) 553–581. Zbl1165.82018MR2448141
- [10] B. De Saporta, Y. Guivarc’h and E. LePage. On the multidimensional stochastic equation Y(n+1)=a(n)Y(n)+b(n). C. R. Math. Acad. Sci. Paris 339 (2004) 499–502. Zbl1063.60099MR2099549
- [11] P. Filipowicz, J. Javanainen and P. Meystre. Theory of a microscopic maser. Phys. Rev. A 34 (1986) 3077–3087.
- [12] Y. Guivarc’h. Limit theorem for random walks and products of random matrices. In Proceedings of the CIMPA-TIFR School on Probability Measures on Groups, Recent Directions and Trends, September 2002255–330. TIFR, Mumbai, 2006. Zbl1247.60009MR2213480
- [13] W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (1963) 13–30. Zbl0127.10602MR144363
- [14] V. Jaksic and C.-A. Pillet. Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Comm. Math. Phys. 226 (2002) 131–162. Zbl0990.82017MR1889995
- [15] H. Kesten and F. Spitzer. Convergence in distribution of products of random matrices. Z. Wahrsch. Verw. Gebiete 67 (1984) 363–386. Zbl0535.60016MR761563
- [16] Y. Kifer and P.-D. Liu. Random dynamics. In Handbook of Dynamical Systems 1B 379–499. B. Hasselblatt and A. Katok (Eds). North-Holland, Amsterdam, 2006. Zbl1130.37301MR2186245
- [17] D. Meschede, H. Walther and G. Müller. One-atom maser. Phys. Rev. Lett. 54 (1985) 551–554.
- [18] M. Merkli, M. Mück and I. M. Sigal. Instability of equilibrium states for coupled heat reservoirs at different temperatures. J. Funct. Anal. 243 (2007) 87–120. Zbl1122.81043MR2291433
- [19] A. Mukherjea. Topics in Products of Random Matrices. TIFR, Mumbai, 2000. Zbl0980.60013MR1759920
- [20] E. Seneta. Non-negative Matrices and Markov Chains. Springer Series in Statistics. Springer, New York, 2000. Zbl1099.60004MR2209438
- [21] S. Schwarz. Infinite product of doubly stochastic matrices. Acta Math. Univ. Comenian. 39 (1980) 131–150. Zbl0521.15010MR619269
- [22] M. Weidinger, B. T. H. Varcoe, R. Heerlein and H. Walther. Trapping states in the micromaser. Phys. Rev. Lett. 82 (1999) 3795–3798.
- [23] T. Wellens, A. Buchleitner, B. Kümmerer and H. Maassen. Quantum state preparation via asymptotic completeness. Phys. Rev. Lett. 85 (2000) 3361–3364.