The Arcsine law as the limit of the internal DLA cluster generated by Sinai’s walk
N. Enriquez; C. Lucas; F. Simenhaus
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 4, page 991-1000
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topEnriquez, N., Lucas, C., and Simenhaus, F.. "The Arcsine law as the limit of the internal DLA cluster generated by Sinai’s walk." Annales de l'I.H.P. Probabilités et statistiques 46.4 (2010): 991-1000. <http://eudml.org/doc/241847>.
@article{Enriquez2010,
abstract = {We identify the limit of the internal DLA cluster generated by Sinai’s walk as the law of a functional of a brownian motion which turns out to be a new interpretation of the Arcsine law.},
author = {Enriquez, N., Lucas, C., Simenhaus, F.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Sinai’s walk; internal DLA; random walks in random environments; excursion theory; Sinai's walk},
language = {eng},
number = {4},
pages = {991-1000},
publisher = {Gauthier-Villars},
title = {The Arcsine law as the limit of the internal DLA cluster generated by Sinai’s walk},
url = {http://eudml.org/doc/241847},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Enriquez, N.
AU - Lucas, C.
AU - Simenhaus, F.
TI - The Arcsine law as the limit of the internal DLA cluster generated by Sinai’s walk
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 4
SP - 991
EP - 1000
AB - We identify the limit of the internal DLA cluster generated by Sinai’s walk as the law of a functional of a brownian motion which turns out to be a new interpretation of the Arcsine law.
LA - eng
KW - Sinai’s walk; internal DLA; random walks in random environments; excursion theory; Sinai's walk
UR - http://eudml.org/doc/241847
ER -
References
top- [1] J. Bertoin. Subordinators: Examples and applications. In Lectures on Probability Theory and Statistics (Saint-Flour, 1997). Lecture Notes in Math. 1717 1–91. Springer, Berlin, 1999. Zbl0955.60046MR1746300
- [2] P. Diaconis and W. Fulton. A growth model, a game, an algebra, Lagrange inversion, and characteristic classes. Rend. Sem. Mat. Univ. Politec. Torino 49 (1993) 95–119. Zbl0776.60128MR1218674
- [3] P. G. Hoel, S. C. Port and C. J. Stone. Introduction to Stochastic Processes. Houghton Mifflin, Boston, MA, 1972. Zbl0258.60003MR358879
- [4] G. F. Lawler, M. Bramson and D. Griffeath. Internal diffusion limited aggregation. Ann. Probab. 20 (1992) 2117–2140. Zbl0762.60096MR1188055
- [5] P. Lévy. Sur certains processus stochastiques homogènes. Compos. Math. 7 (1939) 283–339. Zbl0022.05903MR919
- [6] R. Mansuy and M. Yor. Aspects of Brownian Motion. Springer, Berlin, 2008. Zbl1162.60022MR2454984
- [7] D. Revuz and M. Yor. Continuous martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer, Berlin, 1999. Zbl0917.60006MR1725357
- [8] Y. G. Sinai. The limit behavior of a one-dimensional random walk in a random environment. Teor. Veroyatn. Primen. 27 (1982) 247–258. Zbl0497.60065MR657919
- [9] S. Tavaré and O. Zeitouni. Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1837. Springer, Berlin, 2004. Zbl1034.60001MR2071629
- [10] M. Yor. Local Times and Excursions for Brownian Motion: A Concise Introduction Lecciones en Mathematicas. Universidad Central de Venezuela, Caracas, 1995.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.