Invariant random fields in vector bundles and application to cosmology

Anatoliy Malyarenko

Annales de l'I.H.P. Probabilités et statistiques (2011)

  • Volume: 47, Issue: 4, page 1068-1095
  • ISSN: 0246-0203

Abstract

top
We develop the theory of invariant random fields in vector bundles. The spectral decomposition of an invariant random field in a homogeneous vector bundle generated by an induced representation of a compact connected Lie group G is obtained. We discuss an application to the theory of relic radiation, where G = SO(3). A theorem about equivalence of two different groups of assumptions in cosmological theories is proved.

How to cite

top

Malyarenko, Anatoliy. "Invariant random fields in vector bundles and application to cosmology." Annales de l'I.H.P. Probabilités et statistiques 47.4 (2011): 1068-1095. <http://eudml.org/doc/241955>.

@article{Malyarenko2011,
abstract = {We develop the theory of invariant random fields in vector bundles. The spectral decomposition of an invariant random field in a homogeneous vector bundle generated by an induced representation of a compact connected Lie group G is obtained. We discuss an application to the theory of relic radiation, where G = SO(3). A theorem about equivalence of two different groups of assumptions in cosmological theories is proved.},
author = {Malyarenko, Anatoliy},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {invariant random field; vector bundle; cosmic microwave background; cosmic microwave background radiation},
language = {eng},
number = {4},
pages = {1068-1095},
publisher = {Gauthier-Villars},
title = {Invariant random fields in vector bundles and application to cosmology},
url = {http://eudml.org/doc/241955},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Malyarenko, Anatoliy
TI - Invariant random fields in vector bundles and application to cosmology
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 4
SP - 1068
EP - 1095
AB - We develop the theory of invariant random fields in vector bundles. The spectral decomposition of an invariant random field in a homogeneous vector bundle generated by an induced representation of a compact connected Lie group G is obtained. We discuss an application to the theory of relic radiation, where G = SO(3). A theorem about equivalence of two different groups of assumptions in cosmological theories is proved.
LA - eng
KW - invariant random field; vector bundle; cosmic microwave background; cosmic microwave background radiation
UR - http://eudml.org/doc/241955
ER -

References

top
  1. [1] P. Baldi, D. Marinucci and V. S. Varadarajan. On the characterization of isotropic Gaussian fields on homogeneous spaces of compact groups. Electron. Comm. Probab. 12 (2007) 291–302. Zbl1128.60039MR2342708
  2. [2] A. O. Barut and R. Rączka. Theory of Group Representations and Applications, 2nd edition. World Scientific, Singapore, 1986. Zbl0471.22021MR889252
  3. [3] P. Cabella and M. Kamionkowski. Theory of cosmic microwave background polarization, 2005. Available at arXiv:astro-ph/0403392v2. 
  4. [4] R. Camporesi. The Helgason Fourier transform for homogeneous vector bundles over compact Riemannian symmetric spaces – The local theory. J. Funct. Anal. 220 (2005) 97–117. Zbl1060.43004MR2114700
  5. [5] A. Challinor. Anisotropies in the cosmic microwave background, 2004. Available at arXiv:astro-ph/0403344v1. 
  6. [6] A. Challinor. Cosmic microwave background polarisation analysis. In Data Analysis in Cosmology 121–158. V. J. Martinez, E. Saar, E. Martínez-González and M.-J. Pons-Borderia (Eds). Lecture Notes in Phys. 665. Springer, Berlin, 2009. Zbl1179.85027
  7. [7] A. Challinor and H. Peiris. Lecture notes on the physics of cosmic microwave background anisotropies. In Cosmology and Gravitation: XIII Brazilian School on Cosmology and Gravitation (XIII BSCG), Rio de Janeiro (Brazil), 20 July–2 August 200886–140. M. Novello and S. Perez (Eds). AIP Conf. Proc. 1132. American Institute of Physics, Melville, NY, 2008. 
  8. [8] R. Durrer. The Cosmic Microwave Background. Cambridge Univ. Press, Cambridge, 2008. Zbl0875.83076
  9. [9] I. M. Gelfand and Z. Ya. Shapiro. Representations of the group of rotations in three-dimensional space and their applications. Uspehi Mat. Nauk 7 (1952) 3–117 (in Russian). Zbl0070.25902MR47664
  10. [10] D. Geller, X. Lan and D. Marinucci. Spin needlets spectral estimation. Electron. J. Stat. 3 (2009) 1497–1530. Zbl1326.62195MR2578835
  11. [11] D. Geller and D. Marinucci. Spin wavelets on the sphere. J. Fourier Anal. Appl. 16 (2010) 840–884. Zbl1206.42039MR2737761
  12. [12] A. H. Jaffe. Bayesian analysis of cosmic microwave background data. In Bayesian Methods in Cosmology 229–244. M. P. Hobson, A. H. Jaffe, A. R. Liddle, P. Mukherjee and D. Parkinson (Eds). Cambridge Univ. Press, Cambridge, 2009. 
  13. [13] M. Kamionkowski, A. Kosowsky and A. Stebbins. Statistics of cosmic microwave background polarization. Phys. Rev. D 55 (1997) 7368–7388. 
  14. [14] N. Leonenko and L. Sakhno. On spectral representations of tensor random fields on the sphere, 2009. Available at arXiv:0912.3389v1. Zbl1239.60038
  15. [15] Y.-T. Lin and B. D. Wandelt. A beginner’s guide to the theory of CMB temperature and polarization power spectra in the line-of-sight formalism. Astroparticle Physics 25 (2006) 151–166. 
  16. [16] D. Marinucci and G. Peccati. High-frequency asymptotics for subordinated stationary fields on an Abelian compact group. Stochastic Process. Appl. 118 (2008) 585–613. Zbl1143.60007MR2394764
  17. [17] D. Marinucci and G. Peccati. Group representations and high-resolution central limit theorems for subordinated spherical random fields. Bernoulli 16 (2010) 798–824. Zbl1284.60099MR2730649
  18. [18] D. Marinucci and G. Peccati. Representations of SO(3) and angular polyspectra. J. Multivariate Anal. 101 (2010) 77–100. Zbl1216.60027MR2557620
  19. [19] M. A. Naĭmark and A. I. Ŝtern. Theory of Group Representations. Springer, New York, 1982. Zbl0484.22018MR793377
  20. [20] E. T. Newman and R. Penrose. Note on the Bondi–Metzner–Sachs group. J. Math. Phys. 7 (1966) 863–870. MR194172
  21. [21] A. M. Obukhov. Statistically homogeneous random fields on a sphere. Uspehi Mat. Nauk 2 (1947) 196–198. 
  22. [22] Yu. A. Rozanov. Spectral theory of n-dimensional stationary stochastic processes with discrete time. Uspehi Mat. Nauk 13 (1958) 93–142 (in Russian). Zbl0080.34904MR114252
  23. [23] K. S. Thorne. Multipole expansions of gravitational radiation. Rev. Modern Phys. 52 (1980) 299–339. MR569166
  24. [24] N. Ya. Vilenkin. Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs 22. American Mathematical Society, Providence, RI, 1968. Zbl0172.18404MR229863
  25. [25] S. Weinberg. Cosmology. Oxford Univ. Press, Oxford, 2008. Zbl1147.83002MR2410479
  26. [26] A. M. Yaglom. Second-order homogeneous random fields. In Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II 593–622. Univ. California Press, Berkeley, CA, 1961. Zbl0123.35001MR146880
  27. [27] M. Zaldarriaga and U. Seljak. An all-sky analysis of polarisation in the microwave background. Phys. Rev. D 55 (1997) 1830–1840. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.