Quadratic integral solutions to double Pell equations
Rendiconti del Seminario Matematico della Università di Padova (2011)
- Volume: 126, page 47-61
- ISSN: 0041-8994
Access Full Article
topHow to cite
topVeneziano, Francesco. "Quadratic integral solutions to double Pell equations." Rendiconti del Seminario Matematico della Università di Padova 126 (2011): 47-61. <http://eudml.org/doc/242037>.
@article{Veneziano2011,
author = {Veneziano, Francesco},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Pell equations; S-unit equations},
language = {eng},
pages = {47-61},
publisher = {Seminario Matematico of the University of Padua},
title = {Quadratic integral solutions to double Pell equations},
url = {http://eudml.org/doc/242037},
volume = {126},
year = {2011},
}
TY - JOUR
AU - Veneziano, Francesco
TI - Quadratic integral solutions to double Pell equations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2011
PB - Seminario Matematico of the University of Padua
VL - 126
SP - 47
EP - 61
LA - eng
KW - Pell equations; S-unit equations
UR - http://eudml.org/doc/242037
ER -
References
top- [AH91] D. Abramovich - J. Harris, Abelian varieties and curves in , Compositio Math., 78, 2 (1991), pp. 227–238. Zbl0748.14010MR1104789
- [CZ03] P. Corvaja - U. Zannier, On the number of integral points on algebraic curves, J. Reine Angew. Math., 565 (2003), pp. 27–42. Zbl1153.11315MR2024644
- [CZ04] P. Corvaja - U. Zannier, On integral points on surfaces, Ann. of Math. (2), 160, 2 (2004), pp. 705–726. Zbl1146.11035MR2123936
- [DF93] O. Debarre - R. Fahlaoui, Abelian varieties in and points of bounded degree on algebraic curves, Compositio Math., 88, 3 (1993), pp. 235–249. Zbl0808.14025MR1241949
- [EE93] Edited by B. Edixhoven - J.-H. Evertse, Diophantine approximation and abelian varieties, Lecture Notes in Mathematics, vol. 1566, Springer-Verlag, Berlin (1993), Introductory lectures, Papers from the conference held in Soesterberg, April 12–16, 1992. Zbl0811.14019MR1288998
- [Eve95] J.-H. Evertse, The number of solutions of decomposable form equations, Invent. Math., 122, 3 (1995), pp. 559–601. Zbl0851.11019MR1359604
- [HS91] J. Harris - J. Silverman, Bielliptic curves and symmetric products, Proc. Amer. Math. Soc., 112, 2 (1991), pp. 347–356. Zbl0727.11023MR1055774
- [Mah35] K. Mahler, On the lattice points on curves of genus 1, Proc. London Math. Soc., 39 (1935), pp. 431–466. Zbl61.0146.02JFM61.0146.02
- [Mor69] L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, Vol. 30, Academic Press, London (1969). Zbl0188.34503MR249355
- [NW02] J. Noguchi - J. Winkelmann, Holomorphic curves and integral points off divisors, Math. Z., 239, 3 (2002), pp. 593–610. Zbl1011.32012MR1893854
- [Ser88] J.-P. Serre, Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, Springer-Verlag, New York (1988), Translated from the French. Zbl0703.14001MR918564
- [Sil83] J. H. Silverman, Integer points on curves of genus , J. London Math. Soc. (2), 28, 1 (1983), pp. 1–7. Zbl0487.10015MR703458
- [Voj87] P. Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin (1987). Zbl0609.14011MR883451
- [Voj91] P. Vojta, Arithmetic discriminants and quadratic points on curves, Arithmetic algebraic geometry (Texel, 1989), Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA (1991), pp. 359–376. Zbl0749.14018MR1085268
- [Voj92] P. Vojta, A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing, J. Amer. Math. Soc., 5, 4 (1992), pp. 763–804. Zbl0778.11037MR1151542
- [Voj96] P. Vojta, Integral points on subvarieties of semiabelian varieties. I, Invent. Math., 126, 1 (1996), pp. 133–181. Zbl1011.11040MR1408559
- [Wei07] A. Weil, Number theory, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA (2007), An approach through history from Hammurapi to Legendre, Reprint of the 1984 edition. Zbl1149.01013MR734177
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.