Limit theorem for random walk in weakly dependent random scenery
Nadine Guillotin-Plantard; Clémentine Prieur
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 4, page 1178-1194
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topGuillotin-Plantard, Nadine, and Prieur, Clémentine. "Limit theorem for random walk in weakly dependent random scenery." Annales de l'I.H.P. Probabilités et statistiques 46.4 (2010): 1178-1194. <http://eudml.org/doc/242307>.
@article{Guillotin2010,
abstract = {Let S=(Sk)k≥0 be a random walk on ℤ and ξ=(ξi)i∈ℤ a stationary random sequence of centered random variables, independent of S. We consider a random walk in random scenery that is the sequence of random variables (Un)n≥0, where Un=∑k=0nξSk, n∈ℕ. Under a weak dependence assumption on the scenery ξ we prove a functional limit theorem generalizing Kesten and Spitzer’s [Z. Wahrsch. Verw. Gebiete50 (1979) 5–25] theorem.},
author = {Guillotin-Plantard, Nadine, Prieur, Clémentine},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walks; random scenery; weak dependence; limit theorem; local time},
language = {eng},
number = {4},
pages = {1178-1194},
publisher = {Gauthier-Villars},
title = {Limit theorem for random walk in weakly dependent random scenery},
url = {http://eudml.org/doc/242307},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Guillotin-Plantard, Nadine
AU - Prieur, Clémentine
TI - Limit theorem for random walk in weakly dependent random scenery
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 4
SP - 1178
EP - 1194
AB - Let S=(Sk)k≥0 be a random walk on ℤ and ξ=(ξi)i∈ℤ a stationary random sequence of centered random variables, independent of S. We consider a random walk in random scenery that is the sequence of random variables (Un)n≥0, where Un=∑k=0nξSk, n∈ℕ. Under a weak dependence assumption on the scenery ξ we prove a functional limit theorem generalizing Kesten and Spitzer’s [Z. Wahrsch. Verw. Gebiete50 (1979) 5–25] theorem.
LA - eng
KW - random walks; random scenery; weak dependence; limit theorem; local time
UR - http://eudml.org/doc/242307
ER -
References
top- [1] A. D. Barbour, R. M. Gerrard and G. Reinert. Iterates of expanding maps. Probab. Theory Related Fields 116 (2000) 151–180. Zbl0976.37019MR1743768
- [2] H. C. P. Berbee. Random Walks with Stationary Increments and Renewal Theory. Math. Cent. Tracts. Amsterdam, 1979. Zbl0443.60083MR547109
- [3] P. Billingsley. Convergence of Probability Measures. Wiley, New York–London–Sydney, 1968. Zbl0944.60003MR233396
- [4] E. Bolthausen. A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989) 108–115. Zbl0679.60028MR972774
- [5] A. N. Borodin. Limit theorems for sums of independent random variables defined on a transient random walk. Investigations in the theory of probability distributions, IV. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979) 17–29, 237, 244. Zbl0417.60027MR535455
- [6] A. N. Borodin. A limit theorem for sums of independent random variables defined on a recurrent random walk. Dokl. Akad. Nauk. SSSR 246 (1979) 786–787. Zbl0423.60025MR543530
- [7] B. Cadre. Etude de convergence en loi de fonctionnelles de processus: Formes quadratiques ou multilinéaires aléatoires, Temps locaux d’intersection de marches aléatoires, Théorème central limite presque sûr. Ph.D. dissertation, Université Rennes 1, 1995.
- [8] X. Chen and D. Khoshnevisan. From charged polymers to random walk in random scenery. Preprint, 2008. Available at http://www.math.utk.edu/~xchen/publications.html. Zbl1271.60106MR2681685
- [9] P. Collet, S. Martinez and B. Schmitt. Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory Related Fields 123 (2002) 301–322. Zbl1087.37028MR1918536
- [10] J. Dedecker and C. Prieur. New dependence coefficients. Examples and applications to statistics. Probab. Theory Related Fields 132 (2005) 203–236. Zbl1061.62058MR2199291
- [11] J. Dedecker, P. Doukhan, G. Lang, J. R. Leon, S. Louhichi and C. Prieur. Weak Dependence: With Examples and Applications. Lect. Notes in Stat. 190. Springer, New York, 2007. Zbl1165.62001MR2338725
- [12] R. L. Dobrushin and P. Major. Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 (1979) 27–52. Zbl0397.60034MR550122
- [13] C. Dombry and N. Guillotin-Plantard. Discrete approximation of a stable self-similar stationary increments process. Bernoulli 15 (2009) 195–222. Zbl1214.60020MR2546804
- [14] P. Doukhan and S. Louhichi. A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84 (1999) 313–342. Zbl0996.60020MR1719345
- [15] N. Guillotin-Plantard and A. Le Ny. Transient random walks on 2d-oriented lattices. Theory Probab. Appl. 52 (2007) 815–826. Zbl1180.60039MR2742878
- [16] N. Guillotin-Plantard and A. Le Ny. A functional limit theorem for a 2d-random walk with dependent marginals. Electron. Comm. Probab. 13 (2008) 337–351. Zbl1189.60066MR2415142
- [17] N. Guillotin-Plantard and C. Prieur. Central limit theorem for sampled sums of dependent random variables. ESAIM P&S. To appear. Zbl1219.60023MR2779486
- [18] F. Hofbauer and G. Keller. Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 (1982) 119–140. Zbl0485.28016MR656227
- [19] H. Kesten and F. Spitzer. A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979) 5–25. Zbl0396.60037MR550121
- [20] T. G. Kurtz and P. Protter. Wong-Zakai corrections, random evolutions, and numerical schemes for SEDs. In Stochastic Analysis 331–346. Academic Press, Boston, MA, 1991. Zbl0762.60047MR1119837
- [21] R. Lang and N. X. Xanh. Strongly correlated random fields as observed by a random walker. Probab. Theory Related Fields 64 (1983) 327–340. Zbl0506.60046MR716490
- [22] A. Lasota and J. A. Yorke. On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1974) 481–488. Zbl0298.28015MR335758
- [23] M. Maejima. Limit theorems related to a class of operator-self-similar processes. Nagoya Math. J. 142 (1996) 161–181. Zbl0865.60033MR1399472
- [24] F. Merlevède and M. Peligrad. On the coupling of dependent random variables and applications. In Empirical Process Techniques for Dependent Data 171–193. Birkhäuser, Boston, MA, 2002. Zbl1038.60021MR1958781
- [25] T. Morita. Local limit theorem and distribution of periodic orbits of Lasota–Yorke transformations with infinite Markov partition. J. Math. Soc. Japan 46 (1994) 309–343. Zbl0824.60017MR1264944
- [26] Y. A. Rozanov and V. A. Volkonskii. Some limit theorems for random functions I. Theory Probab. Appl. 4 (1959) 178–197. Zbl0092.33502MR121856
- [27] F. L. Spitzer. Principles of Random Walks, 2nd edition, Springer, New York, 1976. Zbl0979.60002MR388547
- [28] S. A. Utev. Central limit theorem for dependent random variables. Probab. Theory Math. Statist. 2 (1990) 519–528. Zbl0732.60029MR1153906
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.