Limit theorem for random walk in weakly dependent random scenery

Nadine Guillotin-Plantard; Clémentine Prieur

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 4, page 1178-1194
  • ISSN: 0246-0203

Abstract

top
Let S=(Sk)k≥0 be a random walk on ℤ and ξ=(ξi)i∈ℤ a stationary random sequence of centered random variables, independent of S. We consider a random walk in random scenery that is the sequence of random variables (Un)n≥0, where Un=∑k=0nξSk, n∈ℕ. Under a weak dependence assumption on the scenery ξ we prove a functional limit theorem generalizing Kesten and Spitzer’s [Z. Wahrsch. Verw. Gebiete50 (1979) 5–25] theorem.

How to cite

top

Guillotin-Plantard, Nadine, and Prieur, Clémentine. "Limit theorem for random walk in weakly dependent random scenery." Annales de l'I.H.P. Probabilités et statistiques 46.4 (2010): 1178-1194. <http://eudml.org/doc/242307>.

@article{Guillotin2010,
abstract = {Let S=(Sk)k≥0 be a random walk on ℤ and ξ=(ξi)i∈ℤ a stationary random sequence of centered random variables, independent of S. We consider a random walk in random scenery that is the sequence of random variables (Un)n≥0, where Un=∑k=0nξSk, n∈ℕ. Under a weak dependence assumption on the scenery ξ we prove a functional limit theorem generalizing Kesten and Spitzer’s [Z. Wahrsch. Verw. Gebiete50 (1979) 5–25] theorem.},
author = {Guillotin-Plantard, Nadine, Prieur, Clémentine},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walks; random scenery; weak dependence; limit theorem; local time},
language = {eng},
number = {4},
pages = {1178-1194},
publisher = {Gauthier-Villars},
title = {Limit theorem for random walk in weakly dependent random scenery},
url = {http://eudml.org/doc/242307},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Guillotin-Plantard, Nadine
AU - Prieur, Clémentine
TI - Limit theorem for random walk in weakly dependent random scenery
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 4
SP - 1178
EP - 1194
AB - Let S=(Sk)k≥0 be a random walk on ℤ and ξ=(ξi)i∈ℤ a stationary random sequence of centered random variables, independent of S. We consider a random walk in random scenery that is the sequence of random variables (Un)n≥0, where Un=∑k=0nξSk, n∈ℕ. Under a weak dependence assumption on the scenery ξ we prove a functional limit theorem generalizing Kesten and Spitzer’s [Z. Wahrsch. Verw. Gebiete50 (1979) 5–25] theorem.
LA - eng
KW - random walks; random scenery; weak dependence; limit theorem; local time
UR - http://eudml.org/doc/242307
ER -

References

top
  1. [1] A. D. Barbour, R. M. Gerrard and G. Reinert. Iterates of expanding maps. Probab. Theory Related Fields 116 (2000) 151–180. Zbl0976.37019MR1743768
  2. [2] H. C. P. Berbee. Random Walks with Stationary Increments and Renewal Theory. Math. Cent. Tracts. Amsterdam, 1979. Zbl0443.60083MR547109
  3. [3] P. Billingsley. Convergence of Probability Measures. Wiley, New York–London–Sydney, 1968. Zbl0944.60003MR233396
  4. [4] E. Bolthausen. A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989) 108–115. Zbl0679.60028MR972774
  5. [5] A. N. Borodin. Limit theorems for sums of independent random variables defined on a transient random walk. Investigations in the theory of probability distributions, IV. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979) 17–29, 237, 244. Zbl0417.60027MR535455
  6. [6] A. N. Borodin. A limit theorem for sums of independent random variables defined on a recurrent random walk. Dokl. Akad. Nauk. SSSR 246 (1979) 786–787. Zbl0423.60025MR543530
  7. [7] B. Cadre. Etude de convergence en loi de fonctionnelles de processus: Formes quadratiques ou multilinéaires aléatoires, Temps locaux d’intersection de marches aléatoires, Théorème central limite presque sûr. Ph.D. dissertation, Université Rennes 1, 1995. 
  8. [8] X. Chen and D. Khoshnevisan. From charged polymers to random walk in random scenery. Preprint, 2008. Available at http://www.math.utk.edu/~xchen/publications.html. Zbl1271.60106MR2681685
  9. [9] P. Collet, S. Martinez and B. Schmitt. Exponential inequalities for dynamical measures of expanding maps of the interval. Probab. Theory Related Fields 123 (2002) 301–322. Zbl1087.37028MR1918536
  10. [10] J. Dedecker and C. Prieur. New dependence coefficients. Examples and applications to statistics. Probab. Theory Related Fields 132 (2005) 203–236. Zbl1061.62058MR2199291
  11. [11] J. Dedecker, P. Doukhan, G. Lang, J. R. Leon, S. Louhichi and C. Prieur. Weak Dependence: With Examples and Applications. Lect. Notes in Stat. 190. Springer, New York, 2007. Zbl1165.62001MR2338725
  12. [12] R. L. Dobrushin and P. Major. Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 (1979) 27–52. Zbl0397.60034MR550122
  13. [13] C. Dombry and N. Guillotin-Plantard. Discrete approximation of a stable self-similar stationary increments process. Bernoulli 15 (2009) 195–222. Zbl1214.60020MR2546804
  14. [14] P. Doukhan and S. Louhichi. A new weak dependence condition and applications to moment inequalities. Stochastic Process. Appl. 84 (1999) 313–342. Zbl0996.60020MR1719345
  15. [15] N. Guillotin-Plantard and A. Le Ny. Transient random walks on 2d-oriented lattices. Theory Probab. Appl. 52 (2007) 815–826. Zbl1180.60039MR2742878
  16. [16] N. Guillotin-Plantard and A. Le Ny. A functional limit theorem for a 2d-random walk with dependent marginals. Electron. Comm. Probab. 13 (2008) 337–351. Zbl1189.60066MR2415142
  17. [17] N. Guillotin-Plantard and C. Prieur. Central limit theorem for sampled sums of dependent random variables. ESAIM P&S. To appear. Zbl1219.60023MR2779486
  18. [18] F. Hofbauer and G. Keller. Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 (1982) 119–140. Zbl0485.28016MR656227
  19. [19] H. Kesten and F. Spitzer. A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979) 5–25. Zbl0396.60037MR550121
  20. [20] T. G. Kurtz and P. Protter. Wong-Zakai corrections, random evolutions, and numerical schemes for SEDs. In Stochastic Analysis 331–346. Academic Press, Boston, MA, 1991. Zbl0762.60047MR1119837
  21. [21] R. Lang and N. X. Xanh. Strongly correlated random fields as observed by a random walker. Probab. Theory Related Fields 64 (1983) 327–340. Zbl0506.60046MR716490
  22. [22] A. Lasota and J. A. Yorke. On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc. 186 (1974) 481–488. Zbl0298.28015MR335758
  23. [23] M. Maejima. Limit theorems related to a class of operator-self-similar processes. Nagoya Math. J. 142 (1996) 161–181. Zbl0865.60033MR1399472
  24. [24] F. Merlevède and M. Peligrad. On the coupling of dependent random variables and applications. In Empirical Process Techniques for Dependent Data 171–193. Birkhäuser, Boston, MA, 2002. Zbl1038.60021MR1958781
  25. [25] T. Morita. Local limit theorem and distribution of periodic orbits of Lasota–Yorke transformations with infinite Markov partition. J. Math. Soc. Japan 46 (1994) 309–343. Zbl0824.60017MR1264944
  26. [26] Y. A. Rozanov and V. A. Volkonskii. Some limit theorems for random functions I. Theory Probab. Appl. 4 (1959) 178–197. Zbl0092.33502MR121856
  27. [27] F. L. Spitzer. Principles of Random Walks, 2nd edition, Springer, New York, 1976. Zbl0979.60002MR388547
  28. [28] S. A. Utev. Central limit theorem for dependent random variables. Probab. Theory Math. Statist. 2 (1990) 519–528. Zbl0732.60029MR1153906

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.