Groups with all subgroups subnormal or nilpotent-by-Chernikov

Howard Smith

Rendiconti del Seminario Matematico della Università di Padova (2011)

  • Volume: 126, page 245-253
  • ISSN: 0041-8994

How to cite

top

Smith, Howard. "Groups with all subgroups subnormal or nilpotent-by-Chernikov." Rendiconti del Seminario Matematico della Università di Padova 126 (2011): 245-253. <http://eudml.org/doc/242333>.

@article{Smith2011,
author = {Smith, Howard},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {subnormal subgroups; Chernikov groups; locally-soluble-by-finite groups; locally graded groups; nilpotent-by-Chernikov groups},
language = {eng},
pages = {245-253},
publisher = {Seminario Matematico of the University of Padua},
title = {Groups with all subgroups subnormal or nilpotent-by-Chernikov},
url = {http://eudml.org/doc/242333},
volume = {126},
year = {2011},
}

TY - JOUR
AU - Smith, Howard
TI - Groups with all subgroups subnormal or nilpotent-by-Chernikov
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2011
PB - Seminario Matematico of the University of Padua
VL - 126
SP - 245
EP - 253
LA - eng
KW - subnormal subgroups; Chernikov groups; locally-soluble-by-finite groups; locally graded groups; nilpotent-by-Chernikov groups
UR - http://eudml.org/doc/242333
ER -

References

top
  1. [1] M. F. Atiyah - I. G. Macdonald, Introduction to Commutative Algebra, (Addison-Wesley, 1969). Zbl0175.03601MR242802
  2. [2] A. Azarang, On maximal subrings, (FJMS) 32 (2009), pp. 107–118. Zbl1164.13004MR2526909
  3. [3] A. Azarang - O. A. S. Karamzadeh, On the existence of maximal subrings in commutative artinian rings, J. Algebra Appl., 9 (5) (2010), pp. 771–778. Zbl1204.13008MR2726553
  4. [4] A. Azarang - O. A. S. Karamzadeh, On Maximal Subrings of Commutative Rings, to appear in Algebra Colloquium (2011). Zbl1204.13008
  5. [5] H. E. Bell - F. Guerriero, Some Condition for Finiteness and Commutativity of Rings. Int. J. Math. Math. Sci., 13 (3) (1990), pp. 535–544. Zbl0711.16011MR1068018
  6. [6] H. E. Bell - A. A. Klein, On finiteness of rings with finite maximal subrings. J. Math. Math. Sci., 16 (2) (1993), pp. 351–354. Zbl0798.16009MR1210845
  7. [7] J. V. Brawley - G. E. Schnibben, Infinite algebraic extensions of finite fields (Contemporary mathemathics, 1989). Zbl0674.12009MR1006212
  8. [8] D. Ferrand - J.-P. Olivier, Homomorphismes minimaux danneaux, J. Algebra, 16 (1970), pp. 461–471. Zbl0218.13011MR271079
  9. [9] W. Fulton, Algebraic curves (Benjamin, New York, 1969). Zbl0181.23901MR313252
  10. [10] R. Hartshorne, Algebraic geometry (Graduate Texs in Math. 52, Springer-Verlag, New York-Heidelberg-Berlin, 1977). Zbl0367.14001MR463157
  11. [11] N. Jacobson, Lecture in Abstract Algebra III, Theorey of Fields and Galois Theory (Graduate Text in Mathematics 32, Springer-Verlag, New York, 1964). Zbl0455.12001MR392906
  12. [12] I. Kaplansky, Commutative Rings, Revised edn (University of Chicago Press, Chicago 1974). Zbl0296.13001MR345945
  13. [13] A. A. Klein, The Finiteness of a ring with a finite maximal subrings, Comm. Algebra, 21 (4) (1993), pp. 1389–1392. Zbl0793.16009MR1209936
  14. [14] T. J. Laffey, A finiteness theorem for rings, Proc. Roy. Irish Acad. Seet. A, 92 (2) (1992), pp. 285–288. Zbl0792.16005MR1204228
  15. [15] T. Y. Lam, A First Course in Noncmmutative Rings, Second edn, (Springer-Verlag, 2001). Zbl0728.16001MR1838439
  16. [16] T. Kwen Lee - K. Shan Liu, Algebra with a finite-dimensional maximal subalgebra. Comm. Algebra, 33 (1) (2005), pp. 339–342. Zbl1072.16020MR2128490
  17. [17] M. L. Modica, Maximal subrings, Ph.D. Dissertation. (University of Chicago, 1975). MR2611729
  18. [18] S. Roman, Field Theory, Second edn. (Springer-Verlag, 2006). Zbl0816.12001MR2178351
  19. [19] H. Stichtenoth, Algebraic Function Fields and Codes, Second edn, (Springer-Verlag, Berlin Heidelberg, 2009). Zbl0816.14011MR2464941
  20. [20] G. D. Villa Salvador, Topics in the Theory of Algebraic Function Fields, (Brikhauser Boston, 2006). Zbl1154.11001MR2241963
  21. [21] C. Weir, Hyperelliptic function fields, Proceedings of Ottawa Mathematics Conference, May (1-2), (2008). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.