Invariant measures and a stability theorem for locally Lipschitz stochastic delay equations
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 4, page 1121-1146
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topStojkovic, I., and van Gaans, O.. "Invariant measures and a stability theorem for locally Lipschitz stochastic delay equations." Annales de l'I.H.P. Probabilités et statistiques 47.4 (2011): 1121-1146. <http://eudml.org/doc/242357>.
@article{Stojkovic2011,
abstract = {We consider a stochastic delay differential equation with exponentially stable drift and diffusion driven by a general Lévy process. The diffusion coefficient is assumed to be locally Lipschitz and bounded. Under a mild condition on the large jumps of the Lévy process, we show existence of an invariant measure. Main tools in our proof are a variation-of-constants formula and a stability theorem in our context, which are of independent interest.},
author = {Stojkovic, I., van Gaans, O.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Delay equation; invariant measure; Lévy process; semimartingale; Skorohod space; stability; tightness; variation-of-constants formula; delay equation},
language = {eng},
number = {4},
pages = {1121-1146},
publisher = {Gauthier-Villars},
title = {Invariant measures and a stability theorem for locally Lipschitz stochastic delay equations},
url = {http://eudml.org/doc/242357},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Stojkovic, I.
AU - van Gaans, O.
TI - Invariant measures and a stability theorem for locally Lipschitz stochastic delay equations
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 4
SP - 1121
EP - 1146
AB - We consider a stochastic delay differential equation with exponentially stable drift and diffusion driven by a general Lévy process. The diffusion coefficient is assumed to be locally Lipschitz and bounded. Under a mild condition on the large jumps of the Lévy process, we show existence of an invariant measure. Main tools in our proof are a variation-of-constants formula and a stability theorem in our context, which are of independent interest.
LA - eng
KW - Delay equation; invariant measure; Lévy process; semimartingale; Skorohod space; stability; tightness; variation-of-constants formula; delay equation
UR - http://eudml.org/doc/242357
ER -
References
top- [1] D. Applebaum. Lévy Processes and Stochastic Calculus. Cambridge Univ. Press, Cambridge, 2004. Zbl1200.60001MR2072890
- [2] J. Appleby and X. Mao. Stochastic stabilisation of functional differential equations. Systems Control Lett. 54 (2005) 1069–1081. Zbl1129.34330MR2170288
- [3] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. Zbl0172.21201MR1700749
- [4] S. Cerrai. Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Probab. Theory Related Fields 125 (2003) 271–304. Zbl1027.60064MR1961346
- [5] F. Confortola. Dissipative backward stochastic differential equations with locally Lipschitz nonlinearity. Stochastic Process. Appl. 117 (2007) 613–628. Zbl1112.60048MR2320952
- [6] G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge, 1992. Zbl1140.60034MR1207136
- [7] M. C. Delfour. The largest class of hereditary systems defining a C0 semigroup on the product space. Canad. J. Math. 32 (1980) 969–978. Zbl0448.34074MR590659
- [8] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-O. Walther. Delay Equations. Functional-, Complex-, and Nonlinear Analysis. Springer, New York, 1995. Zbl0826.34002MR1345150
- [9] A. Es-Sarhir and W. Stannat. Invariant measures for semilinear SPDE’s with local Lipschitz drift coefficients and applications. J. Evol. Equ. 8 (2008) 129–154. Zbl1156.47042MR2383485
- [10] A. Gushchin and U. Küchler. On stationary solutions of delay differential equations driven by a Lévy process. Stochastic Process. Appl. 88 (2000) 195–211. Zbl1045.60057MR1767844
- [11] J. Hale. Theory of Functional Differential Equations. Springer, New York, 1977. Zbl0352.34001MR508721
- [12] E. Hausenblas. SPDEs driven by Poisson random measures with non Lipschitz coefficients: Existence results. Probab. Theory Related Fields 137 (2007) 161–200. Zbl1119.60054MR2278455
- [13] J. Jacod and J. Memin. Weak and strong solutions of stochastic differential equations: Existence and stability. In Stochastic Integrals, Proceedings, LMS Durham Symposium, 1980169–212. D. Williams (Ed.). Springer LNM 851. Springer, Berlin, 1981. Zbl0471.60066MR620991
- [14] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes. Springer, Berlin, 2003. Zbl1018.60002MR1943877
- [15] X. Mao. Stochastic Differential Equations and Their Applications. Horwood Publishing, Chichester, 1997. Zbl0892.60057MR1475218
- [16] S.-E. A. Mohammed. Stochastic Functional Differential Equations. Pitman Advanced Publishing Program, Melbourne, 1984. Zbl0584.60066MR754561
- [17] S.-E. A. Mohammed and M. K. R. Scheutzow. Lyapunov exponents of linear stochastic functional differential equations. II: Examples and case studies. Ann. Probab. 25 (1997) 1210–1240. Zbl0885.60043MR1457617
- [18] L. Mytnik, E. Perkins and A. Sturm. On pathwise uniqueness for stochastic heat equations with non-Lipschitz coefficients. Ann. Probab. 34 (2006) 1910–1959. Zbl1108.60057MR2271487
- [19] M. Ondreját. Uniqueness for stochastic non-linear wave equations. Nonlinear Anal. 67 (2007) 3287–3310. Zbl1135.60040MR2350886
- [20] P. E. Protter. Stochastic Integration and Differential Equations, 2nd edition. Springer, Berlin, 2005. Zbl0694.60047MR2273672
- [21] M. Reiß, M. Riedle and O. van Gaans. Delay differential equations driven by Lévy processes: Stationarity and Feller properties. Stochastic Process. Appl. 116 (2006) 1409–1432. Zbl1109.60045MR2260741
- [22] M. Reiß, M. Riedle and O. van Gaans. On Émery’s inequality and a variation-of-constants formula. Stoch. Anal. Appl. 25 (2007) 353–379. Zbl1127.60062MR2303092
- [23] R. Stelzer. Multivariate COGARCH(1, 1) processes. Bernoulli 16 (2010) 80–115. Zbl1200.62110MR2648751
- [24] N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan. Probability Distributions on Banach Spaces. D. Reidel Publishing Company, Dordrecht, 1987. Zbl0698.60003MR1435288
- [25] S. J. Wolfe. On a continuous analogue of the stochastic difference equation Xn = ρXn−1 + Bn. Stochastic Process. Appl. 12 (1982) 301–312. Zbl0482.60062MR656279
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.