Ergodicity of hypoelliptic SDEs driven by fractional brownian motion

M. Hairer; N. S. Pillai

Annales de l'I.H.P. Probabilités et statistiques (2011)

  • Volume: 47, Issue: 2, page 601-628
  • ISSN: 0246-0203

Abstract

top
We demonstrate that stochastic differential equations (SDEs) driven by fractional brownian motion with Hurst parameter H>½ have similar ergodic properties as SDEs driven by standard brownian motion. The focus in this article is on hypoelliptic systems satisfying Hörmander’s condition. We show that such systems enjoy a suitable version of the strong Feller property and we conclude that under a standard controllability condition they admit a unique stationary solution that is physical in the sense that it does not “look into the future.” The main technical result required for the analysis is a bound on the moments of the inverse of the Malliavin covariance matrix, conditional on the past of the driving noise.

How to cite

top

Hairer, M., and Pillai, N. S.. "Ergodicity of hypoelliptic SDEs driven by fractional brownian motion." Annales de l'I.H.P. Probabilités et statistiques 47.2 (2011): 601-628. <http://eudml.org/doc/242429>.

@article{Hairer2011,
abstract = {We demonstrate that stochastic differential equations (SDEs) driven by fractional brownian motion with Hurst parameter H&gt;½ have similar ergodic properties as SDEs driven by standard brownian motion. The focus in this article is on hypoelliptic systems satisfying Hörmander’s condition. We show that such systems enjoy a suitable version of the strong Feller property and we conclude that under a standard controllability condition they admit a unique stationary solution that is physical in the sense that it does not “look into the future.” The main technical result required for the analysis is a bound on the moments of the inverse of the Malliavin covariance matrix, conditional on the past of the driving noise.},
author = {Hairer, M., Pillai, N. S.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {ergodicity; fractional brownian motion; Hörmander’s theorem; fractional Brownian motion},
language = {eng},
number = {2},
pages = {601-628},
publisher = {Gauthier-Villars},
title = {Ergodicity of hypoelliptic SDEs driven by fractional brownian motion},
url = {http://eudml.org/doc/242429},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Hairer, M.
AU - Pillai, N. S.
TI - Ergodicity of hypoelliptic SDEs driven by fractional brownian motion
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 2
SP - 601
EP - 628
AB - We demonstrate that stochastic differential equations (SDEs) driven by fractional brownian motion with Hurst parameter H&gt;½ have similar ergodic properties as SDEs driven by standard brownian motion. The focus in this article is on hypoelliptic systems satisfying Hörmander’s condition. We show that such systems enjoy a suitable version of the strong Feller property and we conclude that under a standard controllability condition they admit a unique stationary solution that is physical in the sense that it does not “look into the future.” The main technical result required for the analysis is a bound on the moments of the inverse of the Malliavin covariance matrix, conditional on the past of the driving noise.
LA - eng
KW - ergodicity; fractional brownian motion; Hörmander’s theorem; fractional Brownian motion
UR - http://eudml.org/doc/242429
ER -

References

top
  1. [1] L. Arnold. Random Dynamical Systems. Springer, Berlin, 1998. Zbl0834.58026MR1374107
  2. [2] F. Baudoin and L. Coutin. Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stochastic Process. Appl. 117 (2007) 550–574. Zbl1119.60043MR2320949
  3. [3] F. Baudoin and M. Hairer. A version of Hörmander’s theorem for the fractional Brownian motion. Probab. Theory Related Fields 139 (2007) 373–395. Zbl1123.60038MR2322701
  4. [4] J.-M. Bismut. Martingales, the Malliavin calculus and hypoellipticity under general Hörmander’s conditions. Z. Wahrsch. Verw. Gebiete 56 (1981) 469–505. Zbl0445.60049MR621660
  5. [5] V. I. Bogachev. Gaussian Measures. Mathematical Surveys and Monographs 62. Amer. Math. Soc., Providence, RI, 1998. Zbl0913.60035MR1642391
  6. [6] L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 (2002) 108–140. Zbl1047.60029MR1883719
  7. [7] G. Da Prato, K. D. Elworthy and J. Zabczyk. Strong Feller property for stochastic semilinear equations. Stochastic Anal. Appl. 13 (1995) 35–45. Zbl0817.60081MR1313205
  8. [8] G. Da Prato and J. Zabczyk. Ergodicity for Infinite-Dimensional Systems. London Mathematical Society Lecture Note Series 229. Cambridge Univ. Press, Cambridge, 1996. Zbl0849.60052MR1417491
  9. [9] K. D. Elworthy and X.-M. Li. Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125 (1994) 252–286. Zbl0813.60049MR1297021
  10. [10] P. K. Friz. Multidimensional Stochastic Processes as Rough Paths. Theory and Applications. Cambridge Studies in Advanced Mathematics 120. Cambridge Univ. Press, Cambridge, 2010. Zbl1193.60053MR2604669
  11. [11] M. Hairer. Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann. Probab. 33 (2005) 703–758. Zbl1071.60045MR2123208
  12. [12] M. Hairer. Ergodic properties of a class of non-Markovian processes. In Trends in Stochastic Analysis. LMS Lecture Note Series 353. Cambridge Univ. Press, Cambridge, 2009. Zbl1186.60052MR2562151
  13. [13] M. Hairer and J. C. Mattingly. Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164 (2006) 993–1032. Zbl1130.37038MR2259251
  14. [14] M. Hairer and J. C. Mattingly. A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Preprint, 2009. Zbl1228.60072MR2786645
  15. [15] Y. Hu and D. Nualart. Differential equations driven by Hölder continuous functions of order greater than 1/2. In Stochastic Analysis and Applications 399–413. Abel Symp. 2. Springer, Berlin, 2007. Zbl1144.34038MR2397797
  16. [16] M. Hairer and A. Ohashi. Ergodic theory for SDEs with extrinsic memory. Ann. Probab. 35 (2007) 1950–1977. Zbl1129.60052MR2349580
  17. [17] L. Hörmander. Hypoelliptic second order differential equations. Acta Math. 119 (1967) 147–171. Zbl0156.10701MR222474
  18. [18] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. I. In Stochastic Analysis (Katata/Kyoto, 1982) 271–306. North-Holland Math. Library 32. North-Holland, Amsterdam, 1984. Zbl0546.60056MR780762
  19. [19] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985) 1–76. Zbl0568.60059MR783181
  20. [20] S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. III. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 391–442. Zbl0633.60078MR914028
  21. [21] T. Lyons and Z. Qian. System Control and Rough Paths. Oxford Univ. Press, Oxford, 2002. Zbl1029.93001MR2036784
  22. [22] P. Malliavin. Stochastic calculus of variations and hypoelliptic operators. In Symp. on Stoch. Diff. Equations, Kyoto 1976147–171. Wiley, New York, 1978. Zbl0411.60060MR536013
  23. [23] P. Malliavin. Stochastic Analysis. Grundlehren der Mathematischen Wissenschaften 313. Springer, Berlin, 1997. Zbl0878.60001MR1450093
  24. [24] Y. S. Mishura. Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics 1929. Springer, Berlin, 2008. Zbl1138.60006MR2378138
  25. [25] L. Mazliak and I. Nourdin. Optimal control for rough differential equations. Stoch. Dyn. 8 (2008) 23–33. Zbl1191.49004MR2399923
  26. [26] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Springer, London, 1993. Zbl0925.60001MR1287609
  27. [27] B. B. Mandelbrot and J. W. van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968) 422–437. Zbl0179.47801MR242239
  28. [28] J. Norris. Simplified Malliavin calculus. In Séminaire de Probabilités, XX, 1984/85 101–130. Lecture Notes in Math. 1204. Springer, Berlin, 1986. Zbl0609.60066MR942019
  29. [29] I. Nourdin and T. Simon. On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion. Statist. Probab. Lett. 76 (2006) 907–912. Zbl1091.60008MR2268434
  30. [30] D. Nualart and B. Saussereau. Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stochastic Process. Appl. 119 (2009) 391–409. Zbl1169.60013MR2493996
  31. [31] D. Nualart. The Malliavin Calculus and Related Topics, 2nd edition. Springer, Berlin, 2006. Zbl0837.60050MR2200233
  32. [32] S. G. Samko, A. A. Kilbas and O. I. Marichev. Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon, 1993. Zbl0818.26003MR1347689
  33. [33] G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes. Chapman & Hall, New York, 1994. Zbl0925.60027MR1280932
  34. [34] L. C. Young. An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 (1936) 251–282. Zbl0016.10404MR1555421

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.