Continuous differentiability of renormalized intersection local times in R1

Jay S. Rosen

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 4, page 1025-1041
  • ISSN: 0246-0203

Abstract

top
We study γk(x2, …, xk; t), the k-fold renormalized self-intersection local time for brownian motion in R1. Our main result says that γk(x2, …, xk; t) is continuously differentiable in the spatial variables, with probability 1.

How to cite

top

Rosen, Jay S.. "Continuous differentiability of renormalized intersection local times in R1." Annales de l'I.H.P. Probabilités et statistiques 46.4 (2010): 1025-1041. <http://eudml.org/doc/242562>.

@article{Rosen2010,
abstract = {We study γk(x2, …, xk; t), the k-fold renormalized self-intersection local time for brownian motion in R1. Our main result says that γk(x2, …, xk; t) is continuously differentiable in the spatial variables, with probability 1.},
author = {Rosen, Jay S.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {continuous differentiability; intersection local time; brownian motion; Brownian motion},
language = {eng},
number = {4},
pages = {1025-1041},
publisher = {Gauthier-Villars},
title = {Continuous differentiability of renormalized intersection local times in R1},
url = {http://eudml.org/doc/242562},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Rosen, Jay S.
TI - Continuous differentiability of renormalized intersection local times in R1
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 4
SP - 1025
EP - 1041
AB - We study γk(x2, …, xk; t), the k-fold renormalized self-intersection local time for brownian motion in R1. Our main result says that γk(x2, …, xk; t) is continuously differentiable in the spatial variables, with probability 1.
LA - eng
KW - continuous differentiability; intersection local time; brownian motion; Brownian motion
UR - http://eudml.org/doc/242562
ER -

References

top
  1. [1] R. Bass and D. Khoshnevisan. Intersection local times and Tanaka formulas. Ann. Inst. H. Poincaré Probab. Statist. 29 (1993) 419–452. Zbl0798.60072MR1246641
  2. [2] E. B. Dynkin. Self-intersection gauge for random walks and for Brownian motion. Ann. Probab. 16 (1988) 1–57. Zbl0638.60081MR920254
  3. [3] J.-F. Le Gall. Propriétés d’intersection des marches aléatoires, I. Comm. Math. Phys. 104 (1986) 471–507. Zbl0609.60078MR840748
  4. [4] J.-F. Le Gall. Fluctuation results for the Wiener sausage. Ann. Probab. 16 (1988) 991–1018. Zbl0665.60080MR942751
  5. [5] J.-F. Le Gall. Some properties of planar Brownian motion. In École d’ Été de Probabilités de St. Flour XX, 1990. 111–235. Lecture Notes in Math. 1527 Springer, Berlin, 1992. Zbl0779.60068MR1229519
  6. [6] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, Berlin, 1998. Zbl0731.60002
  7. [7] J. Rosen. Tanaka’s formula for multiple intersections of planar Brownian motion. Stochastic Process. Appl. 23 (1986) 131–141. Zbl0612.60070MR866291
  8. [8] J. Rosen. A renormalized local time for the multiple intersections of planar Brownian motion. In Séminaire de Probabilités XX, 1984/85. 515–531. Lecture Notes in Math. 1204. Springer, Berlin, 1986. Zbl0611.60065MR942041
  9. [9] J. Rosen. Derivatives of self-intersection local times. In Séminaire de Probabilités, XXXVIII 263–281. Lecture Notes in Math. 1857. Springer, New York, 2005. Zbl1063.60110MR2126979
  10. [10] J. Rosen. Joint continuity and a Doob–Meyer type decomposition for renormalized intersection local times. Ann. Inst. H. Poincaré Probab. Statist. 35 (1999) 143–176. Zbl0922.60072MR1678521
  11. [11] J. Rosen. Joint continuity of renormalized intersection local times. Ann. Inst. H. Poincaré Probab. Statist. 32 (1996) 671–700. Zbl0867.60049MR1422306
  12. [12] J. Rosen. Dirichlet processes and an intrinsic characterization of renormalized intersection local times. Ann. Inst. H. Poincaré Probab. Statist. 37 (2001) 403–420. Zbl0981.60072MR1876838
  13. [13] J. Rosen. A stochastic calculus proof of the CLT for the L2 modulus of continuity of local time. Preprint. Zbl1219.60028MR2790369
  14. [14] S. R. S. Varadhan. Appendix to Euclidian quantum field theory by K. Symanzyk. In Local Quantum Theory. R. Jost (ed.). Academic Press, New York, 1969. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.