An integral formula related to inner isoptics
Rendiconti del Seminario Matematico della Università di Padova (2011)
- Volume: 125, page 39-50
- ISSN: 0041-8994
Access Full Article
topHow to cite
topMartini, H., and Mozgawa, W.. "An integral formula related to inner isoptics." Rendiconti del Seminario Matematico della Università di Padova 125 (2011): 39-50. <http://eudml.org/doc/242780>.
@article{Martini2011,
author = {Martini, H., Mozgawa, W.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {inner isoptic; simple convex planar curve},
language = {eng},
pages = {39-50},
publisher = {Seminario Matematico of the University of Padua},
title = {An integral formula related to inner isoptics},
url = {http://eudml.org/doc/242780},
volume = {125},
year = {2011},
}
TY - JOUR
AU - Martini, H.
AU - Mozgawa, W.
TI - An integral formula related to inner isoptics
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2011
PB - Seminario Matematico of the University of Padua
VL - 125
SP - 39
EP - 50
LA - eng
KW - inner isoptic; simple convex planar curve
UR - http://eudml.org/doc/242780
ER -
References
top- [1] W. Cieslak - A. Miernowski - W. Mozgawa, Isoptics of a closed strictly convex curve, in: Global differential geometry and global Analysis (Berlin, 1990), pp. 28–35, Lecture Notes in Mathematics, 1481 (Springer, Berlin, 1991). Zbl0739.53001MR1178515
- [2] H. Martini, A contribution to the light field theory, Beitr. Algebra Geom., 30 (1990), pp. 193–201. Zbl0679.52004MR1061015
- [3] A. Miernowski - W. Mozgawa, On some geometric condition for the convexity of isoptics, Rend. Sem. Mat. Univ. Pol. Torino, 55, no. 2 (1997), pp. 93–98. Zbl0928.52003MR1680507
- [4] W. Mozgawa, On billiards and Poncelet's porism, Rend. Semin. Mat. Univ. Padova, 120 (2008), pp. 157–166. Zbl1165.53303MR2492656
- [5] W. Mozgawa, Integral formulas related to ovals, Beitr. Algebra Geom., 50 (2009), pp. 555–561. Zbl1180.53077MR2572020
- [6] G. Weiss - H. Martini, On curves and surfaces in illumination geometry, J. Geom. Graphics, 4 (2000), pp. 169–180. Zbl0982.53007MR1829541
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.