Structure and detection theorems for k [ C 2 × C 4 ] -modules

Semra Öztürk Kaptanoǧlu

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 123, page 169-190
  • ISSN: 0041-8994

How to cite

top

Öztürk Kaptanoǧlu, Semra. "Structure and detection theorems for $k[C_{2}\times C_{4}]$-modules." Rendiconti del Seminario Matematico della Università di Padova 123 (2010): 169-190. <http://eudml.org/doc/243070>.

@article{ÖztürkKaptanoǧlu2010,
author = {Öztürk Kaptanoǧlu, Semra},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {group algebras; finite Abelian -groups; finitely generated modules; direct sum decompositions; indecomposable summands; restrictions; shifted cyclic subgroups; multiplicities; rank varieties; wild representation type},
language = {eng},
pages = {169-190},
publisher = {Seminario Matematico of the University of Padua},
title = {Structure and detection theorems for $k[C_\{2\}\times C_\{4\}]$-modules},
url = {http://eudml.org/doc/243070},
volume = {123},
year = {2010},
}

TY - JOUR
AU - Öztürk Kaptanoǧlu, Semra
TI - Structure and detection theorems for $k[C_{2}\times C_{4}]$-modules
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 123
SP - 169
EP - 190
LA - eng
KW - group algebras; finite Abelian -groups; finitely generated modules; direct sum decompositions; indecomposable summands; restrictions; shifted cyclic subgroups; multiplicities; rank varieties; wild representation type
UR - http://eudml.org/doc/243070
ER -

References

top
  1. [AE] J. L. Alperin - L. Evens, Representations, resolutions, and Quillens's dimension theorem, J. Pure Appl. Algebra, 144 (1981), pp. 1--9. Zbl0469.20008MR621284
  2. [Ba] V. A. Basev, Representations of the group 2 × 2 in a field of characteristic 2 , Dokl. Akad. Nauk. SSSR, 141 (1961), pp. 1015--1018. Zbl0111.02901MR132097
  3. [Be0] D. Benson, Modular Representation Theory; New Trends and Methods, Lecture Notes in Mathematics, no. 1081, Springer Verlag, Berlin, 1984. Zbl0564.20004MR765858
  4. [Be1] D. Benson, Representations and Cohomology, vol. I, Cambridge Univ., Cambridge, 1991. Zbl0718.20001
  5. [Be2] D. Benson, Representations and Cohomology, vol. II, Cambridge Univ., Cambridge, 1991. 
  6. [Ca] J. F. Carlson, The varieties and the cohomology ring of a module, J. Algebra, 85 (1983), pp. 104--143. Zbl0526.20040MR723070
  7. [Ch] L. Chouinard, Projectivity and relative projectivity for group rings, J. Pure Appl. Algebra, 7 (1976), pp. 287--302. Zbl0327.20020MR401943
  8. [Co] S. B. Conlon, Certain representation algebras, J. Austral. Math. Soc., 5 (1965), pp. 89--99. Zbl0229.16009MR185024
  9. [Da] E. Dade, Endo-permutation modules over p -groups II, Ann. of Math., 108 (1978), pp. 317--346. Zbl0404.16003MR506990
  10. [HeRe] A. Heller - I. Reiner, Indecomposable representations, Illinois J. Math., 5 (1961), pp. 314--323. Zbl0111.03101MR122890
  11. [Ka] S. Ö. Kaptanoǧlu, Betti numbers of fixed point sets and multiplicities of indecomposable summands, J. Aust. Math. Soc., 74 (2003), pp. 165--171. Zbl1031.55003MR1957876
  12. [Ka1] S. Ö. Kaptanoǧlu, A restriction theorem for 
  13. [Kr] O. Kroll, Complexity and elementary abelian p -groups, J. Algebra, 88 (1984), pp. 155--172. Zbl0536.20033MR741936
  14. [FP] E. F. Friedlander - J. Pevtsova, Representation-theoretic support spaces for finite group schemes, Amer. J. Math., 127, no. 2 (2005), pp. 379--420. Zbl1072.20009MR2130619
  15. [FP1] E. F. Friedlander - J. Pevtsova, Π -supports for modules for finite group schemes over a field, Duke Math. J., 139, no. 2 (2007), pp. 317--368. Zbl1128.20031MR2352134
  16. [SFP] A. Suslin - E. F. Friedlander - J. Pevtsova, Generic and maximal Jordan types, Invent. Math., 168, no. 3 (2007), pp. 485--522. Zbl1117.14047MR2299560

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.