Realization theorems for valuated p n -socles

Patrick W. Keef

Rendiconti del Seminario Matematico della Università di Padova (2011)

  • Volume: 126, page 151-173
  • ISSN: 0041-8994

How to cite

top

Keef, Patrick W.. "Realization theorems for valuated $p^n$ -socles." Rendiconti del Seminario Matematico della Università di Padova 126 (2011): 151-173. <http://eudml.org/doc/243162>.

@article{Keef2011,
author = {Keef, Patrick W.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Abelian -groups; valuated vector spaces; valuated -groups; -summable groups; Ulm functions},
language = {eng},
pages = {151-173},
publisher = {Seminario Matematico of the University of Padua},
title = {Realization theorems for valuated $p^n$ -socles},
url = {http://eudml.org/doc/243162},
volume = {126},
year = {2011},
}

TY - JOUR
AU - Keef, Patrick W.
TI - Realization theorems for valuated $p^n$ -socles
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2011
PB - Seminario Matematico of the University of Padua
VL - 126
SP - 151
EP - 173
LA - eng
KW - Abelian -groups; valuated vector spaces; valuated -groups; -summable groups; Ulm functions
UR - http://eudml.org/doc/243162
ER -

References

top
  1. [1] D. Cutler, Another summable C Ω -group, Proc. Amer. Math. Soc., 26 (1970), pp. 43–44. Zbl0223.20056MR262355
  2. [2] P. Danchev - P. Keef, An application of set theory to ø + n -totally p ø + n -Projective primary abelian groups, Mediterr. J. Math. (to appear). Zbl1259.20059
  3. [3] P. Danchev - P. Keef, Generalized Wallace theorems, Math. Scand., 104 (1) (2009), pp. 33–50. Zbl1169.20029MR2498370
  4. [4] P. Danchev - P. Keef, n -Summable valuated p n -socles and primary abelian groups, Commun. Algebra, 38 (2010), pp. 3137–3153. Zbl1210.20049MR2724211
  5. [5] P. Danchev - P. Keef, Nice elongations of primary abelian groups, Publ. Mat., 54 (2) (2010), pp. 317–339. Zbl1214.20055MR2675926
  6. [6] L. Fuchs, Infinite Abelian Groups, Volumes I & II, Academic Press, (New York, 1970 and 1973). Zbl0257.20035
  7. [7] L. Fuchs, Vector spaces with valuations, J. Algebra, 35 (1975), pp. 23–38. Zbl0318.15002MR371995
  8. [8] P. Griffith, Infinite Abelian Group Theory, The University of Chicago Press (Chicago and London, 1970). Zbl0204.35001MR289638
  9. [9] K. Honda, Realism in the theory of abelian groups III, Comment. Math. Univ. St. Pauli, 12 (1964), pp. 75–111. Zbl0123.02302MR162848
  10. [10] R. Hunter - F. Richman - E. Walker, Existence Theorems for Warfield Groups, Trans. Amer. Math. Soc., 235 (1978), pp. 345–362. Zbl0368.20034MR473044
  11. [11] J. Irwin - P. Keef, Primary abelian groups and direct sums of cyclics, J. Algebra, 159 (2) (1993), pp. 387–399. Zbl0803.20035MR1231220
  12. [12] T. Jech, Set Theory (Third Millennium Edition), Springer (Berlin, 2002). Zbl1007.03002MR1940513
  13. [13] P. Keef, On ø 1 - p ø + n -projective primary abelian groups, J. Algebra and Number Theory Academia, 1 (1) (2010), pp. 53–87. Zbl1229.20055MR1222172
  14. [14] P. Keef - P. Danchev, On m , n -balanced projective and m , n -totally projective primary abelian groups, Submitted. Zbl1273.20053
  15. [15] P. Keef - P. Danchev, On n -simply presented primary abelian groups, To appear in Houston J. Math. Zbl1271.20066
  16. [16] F. Richman - E. Walker, Valuated groups, J. Algebra, 56 (1) (1979), pp. 145–167. Zbl0401.20049MR527162

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.