Giant vacant component left by a random walk in a random d-regular graph
Jiří Černý; Augusto Teixeira; David Windisch
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 4, page 929-968
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topČerný, Jiří, Teixeira, Augusto, and Windisch, David. "Giant vacant component left by a random walk in a random d-regular graph." Annales de l'I.H.P. Probabilités et statistiques 47.4 (2011): 929-968. <http://eudml.org/doc/243363>.
@article{Černý2011,
abstract = {We study the trajectory of a simple random walk on a d-regular graph with d ≥ 3 and locally tree-like structure as the number n of vertices grows. Examples of such graphs include random d-regular graphs and large girth expanders. For these graphs, we investigate percolative properties of the set of vertices not visited by the walk until time un, where u > 0 is a fixed positive parameter. We show that this so-called vacant set exhibits a phase transition in u in the following sense: there exists an explicitly computable threshold u⋆ ∈ (0, ∞) such that, with high probability as n grows, if u < u⋆, then the largest component of the vacant set has a volume of order n, and if u > u⋆, then it has a volume of order logn. The critical value u⋆ coincides with the critical intensity of a random interlacement process on a d-regular tree. We also show that the random interlacements model describes the structure of the vacant set in local neighbourhoods.},
author = {Černý, Jiří, Teixeira, Augusto, Windisch, David},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk; vacant set; regular graph; expanders; random interlacement; phase transition; simple random walk; trajectory; random interlacement model; fixed positive parameter; largest component; percolative properties; tree-like structure; threshold},
language = {eng},
number = {4},
pages = {929-968},
publisher = {Gauthier-Villars},
title = {Giant vacant component left by a random walk in a random d-regular graph},
url = {http://eudml.org/doc/243363},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Černý, Jiří
AU - Teixeira, Augusto
AU - Windisch, David
TI - Giant vacant component left by a random walk in a random d-regular graph
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 4
SP - 929
EP - 968
AB - We study the trajectory of a simple random walk on a d-regular graph with d ≥ 3 and locally tree-like structure as the number n of vertices grows. Examples of such graphs include random d-regular graphs and large girth expanders. For these graphs, we investigate percolative properties of the set of vertices not visited by the walk until time un, where u > 0 is a fixed positive parameter. We show that this so-called vacant set exhibits a phase transition in u in the following sense: there exists an explicitly computable threshold u⋆ ∈ (0, ∞) such that, with high probability as n grows, if u < u⋆, then the largest component of the vacant set has a volume of order n, and if u > u⋆, then it has a volume of order logn. The critical value u⋆ coincides with the critical intensity of a random interlacement process on a d-regular tree. We also show that the random interlacements model describes the structure of the vacant set in local neighbourhoods.
LA - eng
KW - random walk; vacant set; regular graph; expanders; random interlacement; phase transition; simple random walk; trajectory; random interlacement model; fixed positive parameter; largest component; percolative properties; tree-like structure; threshold
UR - http://eudml.org/doc/243363
ER -
References
top- [1] D. J. Aldous and M. Brown. Inequalities for rare events in time-reversible Markov chains. II. Stochastic Process. Appl. 44 (1993) 15–25. Zbl0812.60054MR1198660
- [2] D. J. Aldous and J. A. Fill. Reversible Markov chains and random walks on graphs. Available at http://www.stat.berkeley.edu/~aldous/RWG/book.html.
- [3] N. Alon, I. Benjamini and A. Stacey. Percolation on finite graphs and isoperimetric inequalities. Ann. Probab. 32 (2004) 1727–1745. Zbl1046.05071MR2073175
- [4] K. B. Athreya. Large deviation rates for branching processes. I. Single type case. Ann. Appl. Probab. 4 (1994) 779–790. Zbl0806.60068MR1284985
- [5] K. B. Athreya and P. E. Ney. Branching Processes. Die Grundlehren der Mathematischen Wissenschaften 196. Springer, New York, 1972. Zbl0259.60002MR373040
- [6] I. Benjamini and A.-S. Sznitman. Giant component and vacant set for random walk on a discrete torus. J. Eur. Math. Soc. (JEMS) 10 (2008) 133–172. Zbl1141.60057MR2349899
- [7] C. Borgs, J. T. Chayes, R. van der Hofstad, G. Slade and J. Spencer. Random subgraphs of finite graphs. I. The scaling window under the triangle condition. Random Structures Algorithms 27 (2005) 137–184. Zbl1076.05071MR2155704
- [8] A. Broder and E. Shamir. On the second eigenvalue of random regular graphs. In 28th Annual Symposium on Foundations of Computer Science 286–294. IEEE Comput. Soc. Press, Washington, DC, 1987.
- [9] A. Dembo and A.-S. Sznitman. On the disconnection of a discrete cylinder by a random walk. Probab. Theory Related Fields 136 (2006) 321–340. Zbl1105.60029MR2240791
- [10] R. Durrett. Probability: Theory and Examples, 2nd edition. Duxbury Press, Belmont, CA, 1996. Zbl1202.60002MR1609153
- [11] P. Erdős and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 (1960) 17–61. Zbl0103.16301MR125031
- [12] J. Friedman. On the second eigenvalue and random walks in random d-regular graphs. Combinatorica 11 (1991) 331–362. Zbl0760.05078MR1137767
- [13] J. Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. Mem. Amer. Math. Soc. 195 (2008) viii+100. Zbl1177.05070MR2437174
- [14] E. Lubetzky and A. Sly. Cutoff phenomena for random walks on random regular graphs. Duke Math. J. 153 (2010) 475–510. Available at arXiv:0812.0060. Zbl1202.60012MR2667423
- [15] A. Lubotzky, R. Phillips and P. Sarnak. Ramanujan graphs. Combinatorica 8 (1988) 261–277. Zbl0661.05035MR963118
- [16] C. McDiarmid. On the method of bounded differences. In Surveys in Combinatorics, 1989 (Norwich, 1989) 148–188. London Math. Soc. Lecture Note Ser. 141. Cambridge Univ. Press, Cambridge, 1989. Zbl0712.05012MR1036755
- [17] A. Nachmias and Y. Peres. Critical percolation on random regular graphs. Random Structures Algorithms 36 (2010) 111–148. Available at arXiv:0707.2839. Zbl1209.05228MR2583058
- [18] B. Pittel. Edge percolation on a random regular graph of low degree. Ann. Probab. 36 (2008) 1359–1389. Zbl1160.05054MR2435852
- [19] L. Saloff-Coste. Lectures on finite Markov chains. In Lectures on Probability Theory and Statistics (Saint-Flour, 1996) 301–413. Lecture Notes in Math. 1665. Springer, Berlin, 1997. Zbl0885.60061MR1490046
- [20] V. Sidoravicius and A.-S. Sznitman. Percolation for the vacant set of random interlacements. Comm. Pure Appl. Math. 62 (2009) 831–858. Zbl1168.60036MR2512613
- [21] A.-S. Sznitman. A lower bound on the critical parameter of interlacement percolation in high dimension. Probab. Theory Related Fields. To appear (2011). Zbl1230.60103MR2778797
- [22] A.-S. Sznitman. On the domination of random walk on a discrete cylinder by random interlacements. Electron. J. Probab. 14 (2009) 1670–1704. Zbl1196.60170MR2525107
- [23] A.-S. Sznitman. Random walks on discrete cylinders and random interlacements. Probab. Theory Related Fields 145 (2009) 143–174. Zbl1172.60316MR2520124
- [24] A.-S. Sznitman. Upper bound on the disconnection time of discrete cylinders and random interlacements. Ann. Probab. 37 (2009) 1715–1746. Zbl1179.60025MR2561432
- [25] A.-S. Sznitman. Vacant set of random interlacements and percolation. Ann. of Math. (2) 171 (2010) 2039–2087. Zbl1202.60160MR2680403
- [26] A. Teixeira. Interlacement percolation on transient weighted graphs. Electron. J. Probab. 14 (2009) 1604–1628. Zbl1192.60108MR2525105
- [27] A. Teixeira and D. Windisch. On the fragmentation of a torus by random walk. Commun. Pure Appl. Math. To appear (2011). Available at arXiv:1007.0902. Zbl1235.60143MR2838338
- [28] D. Windisch. Random walk on a discrete torus and random interlacements. Electron. Commun. Probab. 13 (2008) 140–150. Zbl1187.60089MR2386070
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.