Finite groups with an automorphism of prime order whose fixed points are in the Frattini of a nilpotent subgroup
- Volume: 1, Issue: 2, page 89-92
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topGilotti, Anna Luisa. "Finite groups with an automorphism of prime order whose fixed points are in the Frattini of a nilpotent subgroup." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.2 (1990): 89-92. <http://eudml.org/doc/244068>.
@article{Gilotti1990,
abstract = {In this paper it is proved that a finite group G with an automorphism \( \alpha \) of prime order r, such that \( C\_\{G\}(\alpha) = 1 \) is contained in a nilpotent subgroup H, with \( (|H|, r) = 1 \), is nilpotent provided that either \( |H| \) is odd or, if \( |H| \) is even, then r is not a Fermât prime.},
author = {Gilotti, Anna Luisa},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Nilpotent subgroup; Automorphism; Simple group; Solvable group; finite group; automorphism of prime order; Frattini subgroup; nilpotent subgroup; finite solvable group},
language = {eng},
month = {5},
number = {2},
pages = {89-92},
publisher = {Accademia Nazionale dei Lincei},
title = {Finite groups with an automorphism of prime order whose fixed points are in the Frattini of a nilpotent subgroup},
url = {http://eudml.org/doc/244068},
volume = {1},
year = {1990},
}
TY - JOUR
AU - Gilotti, Anna Luisa
TI - Finite groups with an automorphism of prime order whose fixed points are in the Frattini of a nilpotent subgroup
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/5//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 2
SP - 89
EP - 92
AB - In this paper it is proved that a finite group G with an automorphism \( \alpha \) of prime order r, such that \( C_{G}(\alpha) = 1 \) is contained in a nilpotent subgroup H, with \( (|H|, r) = 1 \), is nilpotent provided that either \( |H| \) is odd or, if \( |H| \) is even, then r is not a Fermât prime.
LA - eng
KW - Nilpotent subgroup; Automorphism; Simple group; Solvable group; finite group; automorphism of prime order; Frattini subgroup; nilpotent subgroup; finite solvable group
UR - http://eudml.org/doc/244068
ER -
References
top- GILOTTI, A. L., Finite groups with an automorphism of prime order fixing the Frattini subgroup of a Sylow p-subgroup. B.U.M.I., (7) 3-A, 1989. Zbl0679.20020MR1008586
- GORENSTEIN, D., Finite groups. Harper & Row, New York1968. Zbl0185.05701MR231903
- RICKMAN, B., Groups which admit a fixed point free automorphism oforder . J. of Algebra, 59, 1979, 77-171. Zbl0408.20017MR541672DOI10.1016/0021-8693(79)90154-6
- GORENSTEIN, D., The classification of finite simple groups. I. Bull. of the American Math. Soc., vol. 1, No 1, 1979. Zbl0414.20009MR513750DOI10.1090/S0273-0979-1979-14551-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.