New classes of analytic and Gevrey semigroups and applications

Angelo Favini; Roberto Triggiani

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1993)

  • Volume: 4, Issue: 1, page 29-34
  • ISSN: 1120-6330

Abstract

top
We consider the operator - A + i B on a complex Hilbert space, where A is positive self-adjoint and B is self-adjoint, and where, moreover, « B is comparable to A α , α 1 », in a technical sense. Two applications are given.

How to cite

top

Favini, Angelo, and Triggiani, Roberto. "New classes of analytic and Gevrey semigroups and applications." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 4.1 (1993): 29-34. <http://eudml.org/doc/244071>.

@article{Favini1993,
abstract = {We consider the operator \( -A + iB \) on a complex Hilbert space, where \( A \) is positive self-adjoint and \( B \) is self-adjoint, and where, moreover, «\( B \) is comparable to \( A^\{\alpha\} \), \( \alpha \ge 1 \)», in a technical sense. Two applications are given.},
author = {Favini, Angelo, Triggiani, Roberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Analytic semigroups; Gevrey class semigroups; Optimal control problems; Cauchy problems; analytic semigroups; optimal control problems},
language = {eng},
month = {3},
number = {1},
pages = {29-34},
publisher = {Accademia Nazionale dei Lincei},
title = {New classes of analytic and Gevrey semigroups and applications},
url = {http://eudml.org/doc/244071},
volume = {4},
year = {1993},
}

TY - JOUR
AU - Favini, Angelo
AU - Triggiani, Roberto
TI - New classes of analytic and Gevrey semigroups and applications
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1993/3//
PB - Accademia Nazionale dei Lincei
VL - 4
IS - 1
SP - 29
EP - 34
AB - We consider the operator \( -A + iB \) on a complex Hilbert space, where \( A \) is positive self-adjoint and \( B \) is self-adjoint, and where, moreover, «\( B \) is comparable to \( A^{\alpha} \), \( \alpha \ge 1 \)», in a technical sense. Two applications are given.
LA - eng
KW - Analytic semigroups; Gevrey class semigroups; Optimal control problems; Cauchy problems; analytic semigroups; optimal control problems
UR - http://eudml.org/doc/244071
ER -

References

top
  1. CHEN, S. - TRIGGIANI, R., Proof of two conjectures by G. Chen and D. L. Russell on structural damping for elastic systems. Proceedings of Conference on Approximation and Optimization held at the University of Havana (Cuba, January 1987). Lecture notes in mathematics, n. 1354, Springer-Verlag, 1988, 234-256. Zbl0669.34015MR996678DOI10.1007/BFb0089601
  2. FAVINI, A. - YAGI, A., Multivalued linear operator and degenerate evolution equations. Ann. Mat. Pura Appl., to appear. Zbl0786.47037MR1219605DOI10.1007/BF01759029
  3. FLANDOLI, F. - LASIECKA, I. - TRIGGIANI, R., Algebraic Riccati equations with non-smoothing observation arising in hyperbolic and Euler-Bemoulli equations. Ann. Mat. Pura Appl., vol. 153, 1988, 307-382. Zbl0674.49004MR1008349DOI10.1007/BF01762397
  4. KATO, T., Perturbation theory for linear operators. Springer-Verlag, 1966. Zbl0836.47009MR203473
  5. KREIN, S. G., Linear differential equations in Banach space. Translations of Math. Monographs, American Math. Soc., vol. 29, 1971. Zbl0229.34050MR342804
  6. LASIECKA, I. - TRIGGIANI, R., Riccati equations arising from systems with unbounded input-solution operator: applications to boundary control problems for wave and plate problems. J. of Nonlinear Analysis, to appear. Zbl0798.49007
  7. PAZY, A., Semigroups of operators and applications to partial differential equations. Springer-Verlag, New York1983. Zbl0516.47023MR710486DOI10.1007/978-1-4612-5561-1
  8. TAIRA, K., The theory of semigroups with weak singularity and its applications to partial differential equations. Tsakuba J. Math., 13, 1989, 513-562. Zbl0695.47031MR1030233
  9. TAYLOR, S., Gevrey class semigroups. Ph. D. thesis, School of Mathematics, University of Minnesota, 1989, Chapter 1. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.