On global controllability of linear time dependent control systems
- Volume: 1, Issue: 4, page 329-333
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topTonolo, Alberto. "On global controllability of linear time dependent control systems." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.4 (1990): 329-333. <http://eudml.org/doc/244081>.
@article{Tonolo1990,
abstract = {Let \((A,B)\) be a linear time dependent control process, defined on an open interval \(J = ]a,\omega[\) with \(a \ge - \infty\) and \(\omega \le \infty\); in this paper we give a description of the function \(\tau : I \rightarrow J\), \(\tau(t) = \inf \\{t' > t : (A, B)\) is \([t, t' ]\)-globally controllable from \(0 \\}\) where \(I = \\{t \in J : \exists t' \in J \) with \( (A, B) [t, t' ] \)-globally controllable from \( 0 \\} \).},
author = {Tonolo, Alberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Linear control process; Global controllability; Kalman's matrix; time-dependent},
language = {eng},
month = {12},
number = {4},
pages = {329-333},
publisher = {Accademia Nazionale dei Lincei},
title = {On global controllability of linear time dependent control systems},
url = {http://eudml.org/doc/244081},
volume = {1},
year = {1990},
}
TY - JOUR
AU - Tonolo, Alberto
TI - On global controllability of linear time dependent control systems
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/12//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 4
SP - 329
EP - 333
AB - Let \((A,B)\) be a linear time dependent control process, defined on an open interval \(J = ]a,\omega[\) with \(a \ge - \infty\) and \(\omega \le \infty\); in this paper we give a description of the function \(\tau : I \rightarrow J\), \(\tau(t) = \inf \{t' > t : (A, B)\) is \([t, t' ]\)-globally controllable from \(0 \}\) where \(I = \{t \in J : \exists t' \in J \) with \( (A, B) [t, t' ] \)-globally controllable from \( 0 \} \).
LA - eng
KW - Linear control process; Global controllability; Kalman's matrix; time-dependent
UR - http://eudml.org/doc/244081
ER -
References
top- CONTI, R., Linear Differential Equations and Control. Istituto Nazionale di Alta Matematica, Institutiones Mathematicae. Vol. 1, Academic Press, London-New York1976. Zbl0356.34007MR513642
- KALMAN, R. E., Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana, (2) 5, 1960, 102-119. Zbl0112.06303MR127472
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.