Nonvariational basic parabolic systems of second order
- Volume: 2, Issue: 2, page 129-136
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCampanato, Sergio. "Nonvariational basic parabolic systems of second order." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 2.2 (1991): 129-136. <http://eudml.org/doc/244088>.
@article{Campanato1991,
abstract = {\( \Omega \) is a bounded open set of \( \mathbb\{R\}^\{n\} \), of class \( C^\{2\} \) and \( T>0 \). In the cylinder \( Q = \Omega \times (0, T) \) we consider non variational basic operator \( a(H(u)) - \partial u / \partial t \) where \( a(\xi) \) is a vector in \( \mathbb\{R\}^\{N\} \), \( N \ge 1 \), which is continuous in \( \xi \) and satisfies the condition (A). It is shown that \( \forall f \in L^\{2\} (Q) \) the Cauchy-Dirichlet problem \( u \in W\_\{0\}^\{2,1\} (Q) \), \( a(H(u)) - \partial u / \partial t = f \) in \( Q \), has a unique solution. It is further shown that if \( u \in W\_\{0\}^\{2,1\} (Q) \) is a solution of the basic system \( a(H(u)) - \partial u / \partial t = 0 \) in \( Q \), then \( H(u) \) and \( \partial u / \partial t \) belong to \( H^\{1\}\_\{loc\} (Q) \). From this the Hölder continuity in \( Q \) of the vectors \( u \) and \( D u \) are deduced respectively when \( n \le 4 \) and \( n = 2 \).},
author = {Campanato, Sergio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Nonlinear non variational systems; (A) condition; Existence theorem; Cauchy-Dirichlet problem; Hölder continuity of solutions; adjacency to linear operator; smoothness of solutions},
language = {eng},
month = {6},
number = {2},
pages = {129-136},
publisher = {Accademia Nazionale dei Lincei},
title = {Nonvariational basic parabolic systems of second order},
url = {http://eudml.org/doc/244088},
volume = {2},
year = {1991},
}
TY - JOUR
AU - Campanato, Sergio
TI - Nonvariational basic parabolic systems of second order
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1991/6//
PB - Accademia Nazionale dei Lincei
VL - 2
IS - 2
SP - 129
EP - 136
AB - \( \Omega \) is a bounded open set of \( \mathbb{R}^{n} \), of class \( C^{2} \) and \( T>0 \). In the cylinder \( Q = \Omega \times (0, T) \) we consider non variational basic operator \( a(H(u)) - \partial u / \partial t \) where \( a(\xi) \) is a vector in \( \mathbb{R}^{N} \), \( N \ge 1 \), which is continuous in \( \xi \) and satisfies the condition (A). It is shown that \( \forall f \in L^{2} (Q) \) the Cauchy-Dirichlet problem \( u \in W_{0}^{2,1} (Q) \), \( a(H(u)) - \partial u / \partial t = f \) in \( Q \), has a unique solution. It is further shown that if \( u \in W_{0}^{2,1} (Q) \) is a solution of the basic system \( a(H(u)) - \partial u / \partial t = 0 \) in \( Q \), then \( H(u) \) and \( \partial u / \partial t \) belong to \( H^{1}_{loc} (Q) \). From this the Hölder continuity in \( Q \) of the vectors \( u \) and \( D u \) are deduced respectively when \( n \le 4 \) and \( n = 2 \).
LA - eng
KW - Nonlinear non variational systems; (A) condition; Existence theorem; Cauchy-Dirichlet problem; Hölder continuity of solutions; adjacency to linear operator; smoothness of solutions
UR - http://eudml.org/doc/244088
ER -
References
top- CAMPANATO, S., theory for non linear non variational differential systems. Rendiconti di Matematica di Roma, to appear. Zbl0777.35028
- CAMPANATO, S., Non variational differential systems. A condition for local existence and uniqueness. Proceedings of the Caccioppoli Conference, to appear. Zbl0796.35052MR1306303
- CAMPANATO, S., A Cordes type condition for nonlinear non variational systems. Rend. Acc. Naz. delle Scienze detta dei XL, vol. XDI, 1989. Zbl0702.35084
- CAMPANATO, S., Sistemi ellittici in forma divergenza. Regolarità all'interno. Quaderni della Scuola Normale Superiore di Pisa, 1980. Zbl0453.35026MR668196
- CAMPANATO, S., Non variational basic elliptic systems of second order. Rendiconti del Seminario Matematico e Fisico di Milano, to appear. Zbl0786.35028MR1229486DOI10.1007/BF02925081
- CAMPANATO, S., Sul problema di Cauchy-Dirichlet per equazioni paraboliche del secondo ordine, non variazionali, a coefficienti discontinui. Rendiconti Sem. Matem. Padova, vol. XLI, 1968. Zbl0202.37602MR252857
- CANNARSA, P., Second order non variational parabolic systems. Boll. U.M.I., Serie V, vol XVHI, C.N.1., 1981. Zbl0473.35043
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.