A perturbation problem in the presence of affine symmetries

Tullio Valent

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1996)

  • Volume: 7, Issue: 4, page 253-266
  • ISSN: 1120-6330

Abstract

top
An approach to a local analysis of solutions of a perturbation problem is proposed when the unperturbed operator has affine symmetries. The main result is a local theorem on existence, uniqueness, and analytic dependence on a parameter.

How to cite

top

Valent, Tullio. "A perturbation problem in the presence of affine symmetries." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 7.4 (1996): 253-266. <http://eudml.org/doc/244105>.

@article{Valent1996,
abstract = {An approach to a local analysis of solutions of a perturbation problem is proposed when the unperturbed operator has affine symmetries. The main result is a local theorem on existence, uniqueness, and analytic dependence on a parameter.},
author = {Valent, Tullio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Perturbation problems; Affine symmetries for operators; Existence theorems; local analysis of solutions of a perturbation problem; unperturbed operator has affine symmetries; local theorem; existence; uniqueness; analytic dependence},
language = {eng},
month = {12},
number = {4},
pages = {253-266},
publisher = {Accademia Nazionale dei Lincei},
title = {A perturbation problem in the presence of affine symmetries},
url = {http://eudml.org/doc/244105},
volume = {7},
year = {1996},
}

TY - JOUR
AU - Valent, Tullio
TI - A perturbation problem in the presence of affine symmetries
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1996/12//
PB - Accademia Nazionale dei Lincei
VL - 7
IS - 4
SP - 253
EP - 266
AB - An approach to a local analysis of solutions of a perturbation problem is proposed when the unperturbed operator has affine symmetries. The main result is a local theorem on existence, uniqueness, and analytic dependence on a parameter.
LA - eng
KW - Perturbation problems; Affine symmetries for operators; Existence theorems; local analysis of solutions of a perturbation problem; unperturbed operator has affine symmetries; local theorem; existence; uniqueness; analytic dependence
UR - http://eudml.org/doc/244105
ER -

References

top
  1. HIRSCH, M. W., Differential topology. Springer-Verlag, New York1976. Zbl0356.57001MR448362
  2. LE DRET, H., Structure of the sets of equilibrated loads in nonlinear elasticity and applications to existence and nonexistence. J. Elasticity, vol. 17, 1987, 123-141. Zbl0654.73029MR885602DOI10.1007/BF00043020
  3. VALENT, T., Boundary Value Problems of Finite Elasticity. Local Theorems on Existence, Uniqueness, and Analytic Dependence on Data. Springer-Verlag, New York1988. Zbl0648.73019MR917733DOI10.1007/978-1-4612-3736-5
  4. VALENT, T., An abstract setting for boundary problems with affine symmetries. Rend. Mat. Acc. Lincei, s. 9, vol. 7, 1996, 47-58. Zbl0871.47043MR1437651

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.