A continuous version of the Filippov-Gronwall inequality for differential inclusions
- Volume: 1, Issue: 2, page 105-110
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topOrnelas, António. "A continuous version of the Filippov-Gronwall inequality for differential inclusions." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.2 (1990): 105-110. <http://eudml.org/doc/244119>.
@article{Ornelas1990,
abstract = {We give an estimate for the distance between a given approximate solution for a Lipschitz differential inclusion and a true solution, both depending continuously on initial data.},
author = {Ornelas, António},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Differential inclusions; Filippov-Gronwall inequality; Relaxed solutions; estimate for the distance; Lipschitz differential inclusion},
language = {eng},
month = {5},
number = {2},
pages = {105-110},
publisher = {Accademia Nazionale dei Lincei},
title = {A continuous version of the Filippov-Gronwall inequality for differential inclusions},
url = {http://eudml.org/doc/244119},
volume = {1},
year = {1990},
}
TY - JOUR
AU - Ornelas, António
TI - A continuous version of the Filippov-Gronwall inequality for differential inclusions
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/5//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 2
SP - 105
EP - 110
AB - We give an estimate for the distance between a given approximate solution for a Lipschitz differential inclusion and a true solution, both depending continuously on initial data.
LA - eng
KW - Differential inclusions; Filippov-Gronwall inequality; Relaxed solutions; estimate for the distance; Lipschitz differential inclusion
UR - http://eudml.org/doc/244119
ER -
References
top- ANTOSIEWICZ, H. A. - CELLINA, A., Continuous selections and differential relations. J. Diff. Eq., 19, 1975, 386-398. Zbl0279.54007MR430368
- AUBIN, J. P. - CELLINA, A., Differential inclusions. Springer, New York1984. Zbl0538.34007MR755330DOI10.1007/978-3-642-69512-4
- CELLINA, A., On the set of solutions to lipschitzian differential inclusions. Diff. and Integral Eq., to appear. Zbl0723.34009MR945823
- CELLINA, A. - ORNELAS, A., Representation of the attainable set for lipschitzian differential inclusions. Preprint SISSA, 73 M, 1988. Zbl0752.34012MR1159946DOI10.1216/rmjm/1181072798
- FILIPPOV, A. F., Classical solutions of differential equations with multivalued right hand side. Vestnik, Moskov. Univ. Ser. Mat. Mech. Astr.22, 1967, 16-26. [english translation: SIAM J. Controls, 1967, 609-621]. Zbl0238.34010MR220995
- FRYSZKOWSKI, A., Continuous selections for a class of nonconvex multivalued maps. Studia Math., 76, 1983, 163-174. Zbl0534.28003MR730018
- HIMMELBERG, C. J., Measurable relations. Fund. Math., 87, 1975, 53-72. Zbl0296.28003MR367142
- HIMMELBERG, C. J. - VAN VLECK, F. S., Lipschitzian generalized differential equations. Rend Sem. Mat. Padova, 48, 1972, 159-169. Zbl0289.49009MR340692
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.