A continuous version of the Filippov-Gronwall inequality for differential inclusions

António Ornelas

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1990)

  • Volume: 1, Issue: 2, page 105-110
  • ISSN: 1120-6330

Abstract

top
We give an estimate for the distance between a given approximate solution for a Lipschitz differential inclusion and a true solution, both depending continuously on initial data.

How to cite

top

Ornelas, António. "A continuous version of the Filippov-Gronwall inequality for differential inclusions." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.2 (1990): 105-110. <http://eudml.org/doc/244119>.

@article{Ornelas1990,
abstract = {We give an estimate for the distance between a given approximate solution for a Lipschitz differential inclusion and a true solution, both depending continuously on initial data.},
author = {Ornelas, António},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Differential inclusions; Filippov-Gronwall inequality; Relaxed solutions; estimate for the distance; Lipschitz differential inclusion},
language = {eng},
month = {5},
number = {2},
pages = {105-110},
publisher = {Accademia Nazionale dei Lincei},
title = {A continuous version of the Filippov-Gronwall inequality for differential inclusions},
url = {http://eudml.org/doc/244119},
volume = {1},
year = {1990},
}

TY - JOUR
AU - Ornelas, António
TI - A continuous version of the Filippov-Gronwall inequality for differential inclusions
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/5//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 2
SP - 105
EP - 110
AB - We give an estimate for the distance between a given approximate solution for a Lipschitz differential inclusion and a true solution, both depending continuously on initial data.
LA - eng
KW - Differential inclusions; Filippov-Gronwall inequality; Relaxed solutions; estimate for the distance; Lipschitz differential inclusion
UR - http://eudml.org/doc/244119
ER -

References

top
  1. ANTOSIEWICZ, H. A. - CELLINA, A., Continuous selections and differential relations. J. Diff. Eq., 19, 1975, 386-398. Zbl0279.54007MR430368
  2. AUBIN, J. P. - CELLINA, A., Differential inclusions. Springer, New York1984. Zbl0538.34007MR755330DOI10.1007/978-3-642-69512-4
  3. CELLINA, A., On the set of solutions to lipschitzian differential inclusions. Diff. and Integral Eq., to appear. Zbl0723.34009MR945823
  4. CELLINA, A. - ORNELAS, A., Representation of the attainable set for lipschitzian differential inclusions. Preprint SISSA, 73 M, 1988. Zbl0752.34012MR1159946DOI10.1216/rmjm/1181072798
  5. FILIPPOV, A. F., Classical solutions of differential equations with multivalued right hand side. Vestnik, Moskov. Univ. Ser. Mat. Mech. Astr.22, 1967, 16-26. [english translation: SIAM J. Controls, 1967, 609-621]. Zbl0238.34010MR220995
  6. FRYSZKOWSKI, A., Continuous selections for a class of nonconvex multivalued maps. Studia Math., 76, 1983, 163-174. Zbl0534.28003MR730018
  7. HIMMELBERG, C. J., Measurable relations. Fund. Math., 87, 1975, 53-72. Zbl0296.28003MR367142
  8. HIMMELBERG, C. J. - VAN VLECK, F. S., Lipschitzian generalized differential equations. Rend Sem. Mat. Padova, 48, 1972, 159-169. Zbl0289.49009MR340692

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.