A comparison theorem for the Levi equation
- Volume: 4, Issue: 3, page 207-212
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topCitti, Giovanna. "A comparison theorem for the Levi equation." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 4.3 (1993): 207-212. <http://eudml.org/doc/244129>.
@article{Citti1993,
abstract = {We prove a strong comparison principle for the solution of the Levi equation \( L(u) = \sum\_\{i=1\}^\{n\} ((1 + u\_\{t\}^\{2\}) (u\_\{x\_\{i\}x\_\{i\}\} + u\_\{y\_\{i\}y\_\{i\}\} ) + (u\_\{x\_\{i\}\}^\{2\} + u\_\{y\_\{i\}\}^\{2\}) u\_\{tt\} + 2(u\_\{y\_\{i\}\} - u\_\{x\_\{i\}\} u\_\{t\}) u\_\{x\_\{i\}t\} - 2(u\_\{x\_\{i\}\} + u\_\{y\_\{i\}\} u\_\{t\}) u\_\{y\_\{i\}t\} + k (x,y,t) (1 + |Du|^\{2\})^\{3/2\} = 0 \), applying Bony Propagation Principle.},
author = {Citti, Giovanna},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Maximum propagation principle; Comparison principle; Levi equation; strong comparison principle; Bony propagation principle},
language = {eng},
month = {9},
number = {3},
pages = {207-212},
publisher = {Accademia Nazionale dei Lincei},
title = {A comparison theorem for the Levi equation},
url = {http://eudml.org/doc/244129},
volume = {4},
year = {1993},
}
TY - JOUR
AU - Citti, Giovanna
TI - A comparison theorem for the Levi equation
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1993/9//
PB - Accademia Nazionale dei Lincei
VL - 4
IS - 3
SP - 207
EP - 212
AB - We prove a strong comparison principle for the solution of the Levi equation \( L(u) = \sum_{i=1}^{n} ((1 + u_{t}^{2}) (u_{x_{i}x_{i}} + u_{y_{i}y_{i}} ) + (u_{x_{i}}^{2} + u_{y_{i}}^{2}) u_{tt} + 2(u_{y_{i}} - u_{x_{i}} u_{t}) u_{x_{i}t} - 2(u_{x_{i}} + u_{y_{i}} u_{t}) u_{y_{i}t} + k (x,y,t) (1 + |Du|^{2})^{3/2} = 0 \), applying Bony Propagation Principle.
LA - eng
KW - Maximum propagation principle; Comparison principle; Levi equation; strong comparison principle; Bony propagation principle
UR - http://eudml.org/doc/244129
ER -
References
top- BONY, J. M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble), 19, 1969, 277-304. Zbl0176.09703MR262881
- BEDFORD, E. - GAVEAU, B., Hypersurfaces with bounded Levi form. Ind. Univ. Mat. J., 27, no. 5, 1978, 867-873. Zbl0365.32011MR499287
- DEBIARD, A. - GAVEAU, B., Problème de Dirichlet pour l'équation de Levi. Bull. Sc. Math., II, 102, no. 4, 1978, 369-386. Zbl0411.35015MR517769
- TOMASSINI, G., Geometric properties of solutions of the Levi equation. Ann. di Mat. Pura e Appl., 152, 1988, 331-344. Zbl0681.35017MR980986DOI10.1007/BF01766155
- TOMASSINI, G., Nonlinear equations related to the Levi form. Rend. Circ. Mat. Palermo, Ser. II, T. XL, 1991, 281-297. Zbl0836.35056MR1151589DOI10.1007/BF02844692
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.