Differential geometry of Cartan domains of type four
- Volume: 1, Issue: 2, page 131-138
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topDe Fabritiis, Chiara. "Differential geometry of Cartan domains of type four." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 1.2 (1990): 131-138. <http://eudml.org/doc/244142>.
@article{DeFabritiis1990,
abstract = {In this note we compute the sectional curvature for the Bergman metric of the Cartan domain of type IV and we give a classification of complex totally geodesic manifolds for this metric.},
author = {De Fabritiis, Chiara},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Curvature; Geodesic; Totally geodesic manifold; Cartan domain; bounded symmetric domain; Bergman kernel function; totally geodesic complex submanifolds},
language = {eng},
month = {5},
number = {2},
pages = {131-138},
publisher = {Accademia Nazionale dei Lincei},
title = {Differential geometry of Cartan domains of type four},
url = {http://eudml.org/doc/244142},
volume = {1},
year = {1990},
}
TY - JOUR
AU - De Fabritiis, Chiara
TI - Differential geometry of Cartan domains of type four
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1990/5//
PB - Accademia Nazionale dei Lincei
VL - 1
IS - 2
SP - 131
EP - 138
AB - In this note we compute the sectional curvature for the Bergman metric of the Cartan domain of type IV and we give a classification of complex totally geodesic manifolds for this metric.
LA - eng
KW - Curvature; Geodesic; Totally geodesic manifold; Cartan domain; bounded symmetric domain; Bergman kernel function; totally geodesic complex submanifolds
UR - http://eudml.org/doc/244142
ER -
References
top- ABATE, M., Complex geodesies in classical domains. Scuola Norm. Sup., Pisa1985.
- FRANZONI, T. - VESENTINI, E., Holomorphic maps and invariant distances. North-Holland, Amsterdam1980. Zbl0447.46040MR563329
- GENTILI, G., Invariant Riemannian geometry on convex cones. Tesi di perfezionamento, Scuola Norm. Sup., Pisa1981.
- HARRIS, L. A., Bounded symmetric homogeneous domains in infinite dimensional holomorphy. Proceedings on infinite dimensional holomorphy. Springer Verlag, Lect. Notes in Math., 346, 1973, 13-40. Zbl0293.46049MR407330
- HIRZEBRUCH, H., Halbraume und ihre holomorphische Automorphismen. Math. Ann., 153, 1964, 395-417. Zbl0124.29303MR159035
- HUA, L. K., Harmonic analysis of functions of several variables in the classical domains. Transl. of Am. Math. Soc., R.I., 1963. Zbl0507.32025MR171936
- KOBAYASHI, S., Hyperbolic manifolds and holomorphic mappings. Dekker, New York1970. Zbl0207.37902MR277770
- KÒCKER, M., Die Geodâtischen von Positivitâtsbereichen. Math. Ann., 135, 1958, 192-202. MR103987
- REIFFEN, H., Die Carathéodorysche Distanz und ihre zugehorige Differentialmetrik. Math. Ann., 161, 1965, 315-324. Zbl0141.08803MR196133
- ROYDEN, H. L., Complex Finsler metrics. Contemp. Math., 49, 1986, 119-124. Zbl0587.53029MR833808DOI10.1090/conm/049/833808
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.