Remarks on positive solutions to a semilinear Neumann problem

Anna Maria Candela; Monica Lazzo

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1994)

  • Volume: 5, Issue: 3, page 237-246
  • ISSN: 1120-6330

Abstract

top
In this paper we study the influence of the domain topology on the multiplicity of solutions to a semilinear Neumann problem. In particular, we show that the number of positive solutions is stable under small perturbations of the domain.

How to cite

top

Candela, Anna Maria, and Lazzo, Monica. "Remarks on positive solutions to a semilinear Neumann problem." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 5.3 (1994): 237-246. <http://eudml.org/doc/244143>.

@article{Candela1994,
abstract = {In this paper we study the influence of the domain topology on the multiplicity of solutions to a semilinear Neumann problem. In particular, we show that the number of positive solutions is stable under small perturbations of the domain.},
author = {Candela, Anna Maria, Lazzo, Monica},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Neumann problem; Variational methods; Multiple solutions; peak solutions; multiple solutions; domain variation},
language = {eng},
month = {9},
number = {3},
pages = {237-246},
publisher = {Accademia Nazionale dei Lincei},
title = {Remarks on positive solutions to a semilinear Neumann problem},
url = {http://eudml.org/doc/244143},
volume = {5},
year = {1994},
}

TY - JOUR
AU - Candela, Anna Maria
AU - Lazzo, Monica
TI - Remarks on positive solutions to a semilinear Neumann problem
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1994/9//
PB - Accademia Nazionale dei Lincei
VL - 5
IS - 3
SP - 237
EP - 246
AB - In this paper we study the influence of the domain topology on the multiplicity of solutions to a semilinear Neumann problem. In particular, we show that the number of positive solutions is stable under small perturbations of the domain.
LA - eng
KW - Neumann problem; Variational methods; Multiple solutions; peak solutions; multiple solutions; domain variation
UR - http://eudml.org/doc/244143
ER -

References

top
  1. BENCI, V. - CERAMI, G., The effect of the domain topology on the number of solutions of nonlinear elliptic problems. Arch. Rat. Mech. Anal., 114, 1991, 79-93. Zbl0727.35055MR1088278DOI10.1007/BF00375686
  2. BENCI, V. - CERAMI, G., Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. To appear. Zbl0822.35046MR1384393DOI10.1007/BF01234314
  3. BENCI, V. - CERAMI, G. - PASSASEO, D., On the number of the positive solutions of some nonlinear elliptic problems.A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa, 1991, 93-107. Zbl0838.35040MR1205376
  4. BERESTYCKI, H. - GALLOUET, T. - KAVIAN, O., Equations de champs scalaires euclidiens nonlinéaires dans le plan. C. R. Acad. Sc. Paris, Série I Math., 297, 1983, 307-310. Zbl0544.35042MR734575
  5. BERESTYCKI, H. - LIONS, P. L., Nonlinear scalar field equations, I-Existence of a ground state. Arch. Rat. Mech. Anal., 82, 1983, 313-375. Zbl0533.35029MR695535DOI10.1007/BF00250555
  6. COLEMAN, S. - GLASER, V. - MARTIN, A., Action minima among solutions to a class of Euclidean scalar field equations. Comm. Math. Phys., 58, 1978, 211-221. MR468913
  7. GIERER, A. - MEINHARDT, H., A theory of biological pattern formation. Kybernetik (Berline), 12, 1972. 
  8. KWONG, M. K., Uniqueness of positive solutions of Δ u - u + u p = 0 in R n . Arch. Rat. Mech. Anal., 105, 1989, 243-266. Zbl0676.35032MR969899DOI10.1007/BF00251502
  9. LAZZO, M., Morse theory and multiple positive solutions to a Neumann problem. Ann. Mat. Pura e Appl., to appear. Zbl0849.35034MR1378245DOI10.1007/BF01759261
  10. LIN, C. S. - NI, W. M. - TAKAGI, I., Large amplitude stationary solutions to a chemotaxis system. Jour. Diff. Eq., 72, 1988, 1-27. Zbl0676.35030MR929196DOI10.1016/0022-0396(88)90147-7
  11. MANCINI, G. - MUSINA, R., The role of the boundary in some semilinear Neumann problems. Rend. Sem. Mat. Padova, 88, 1992, 127-138. Zbl0814.35037MR1209119
  12. NI, W. M. - TAKAGI, I., On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math., 45, 1991, 819-851. Zbl0754.35042MR1115095DOI10.1002/cpa.3160440705
  13. WANG, Z. Q., On the existence of multiple, single-peaked solutions for a semilinear Neumann problem. Arch. Rat. Mech. Anal., 120, 1992, 375-399. Zbl0784.35035MR1185568DOI10.1007/BF00380322

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.